98%
921
2 minutes
20
This study proposes a hybrid approach combining threshold-based algorithm and deep learning to detect four major gait events-initial contact (IC), toe-off (TO), opposite initial contact (OIC), and opposite toe-off (OTO)-using only a smartphone's built-in inertial sensor placed in the user's pocket. The algorithm enables estimation of spatiotemporal gait parameters such as cadence, stride length, loading response (LR), pre-swing (PSw), single limb support (SLS), double limb support (DLS), and swing phase and symmetry. Gait data were collected from 20 healthy individuals and 13 hemiparetic stroke patients. To reduce sensitivity to sensor orientation and suppress noise, sum vector magnitude (SVM) features were extracted and filtered using a second-order Butterworth low-pass filter at 3 Hz. A deep learning model was further compressed using knowledge distillation, reducing model size by 96% while preserving accuracy. The proposed method achieved error rates in event detection below 2% of the gait cycle for healthy gait and a maximum of 4.4% for patient gait in event detection, with corresponding parameter estimation errors also within 4%. These results demonstrated the feasibility of accurate and real-time gait monitoring using a smartphone. In addition, statistical analysis of gait parameters such as symmetry and DLS revealed significant differences between the normal and patient groups. While this study is not intended to provide or guide rehabilitation treatment, it offers a practical means to regularly monitor patients' gait status and observe gait recovery trends over time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299516 | PMC |
http://dx.doi.org/10.3390/s25144395 | DOI Listing |
J Orthop Res
September 2025
University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
The primary purpose of this study was to determine the preoperative predictors of gait biomechanics 6 months after unilateral total knee arthroplasty (TKA). There were 126 participants (age 64.4 ± 7.
View Article and Find Full Text PDFJB JS Open Access
September 2025
Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan.
Background: Lower extremity alignment in knee osteoarthritis (OA) is conventionally assessed using standing radiographs. However, symptoms often manifest during gait. Understanding dynamic alignment during gait may help characterize disease progression and inform treatment strategies.
View Article and Find Full Text PDFCureus
August 2025
Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, USA.
Freezing of gait (FoG) is a disabling symptom of Parkinson's disease (PD) characterized by involuntary cessation/reduction. While deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) effectively treats common PD symptoms such as tremor, its impact on FoG is less clear. Rarely, STN-DBS itself can induce FoG.
View Article and Find Full Text PDFIEEE Internet Things J
August 2025
Geometric Media Lab, School of Arts, Media and Engineering and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA.
Human gait analysis with wearable sensors has been widely used in various applications, such as daily life healthcare, rehabilitation, physical therapy, and clinical diagnostics and monitoring. In particular, ground reaction force (GRF) provides critical information about how the body interacts with the ground during locomotion. Although instrumented treadmills have been widely used as the gold standard for measuring GRF during walking, their lack of portability and high cost make them impractical for many applications.
View Article and Find Full Text PDFFront Neurol
August 2025
Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Background: Gait deficits and leg spasticity are frequent symptoms in Primary and Secondary Progressive Multiple Sclerosis (PPMS and SPMS). Transcutaneous spinal cord stimulation (tSCS) may alleviate these symptoms through the reduction of spinal hyperexcitability. We conducted a single-center, randomized, sham-controlled clinical crossover study (German Clinical Trials Register: DRKS00023357, https://www.
View Article and Find Full Text PDF