A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Energy-Efficient Resource Allocation for Near-Field MIMO Communication Networks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of sixth-generation (6G) wireless networks and large-scale multiple-input multiple-output (MIMO) technology, the number of antennas deployed at base stations (BSs) has increased significantly, resulting in a high probability that users are in the near-field region. Note that it is difficult for the traditional far-field plane-wave model to meet the demand for high-precision beamforming in the near-field region. In this paper, we jointly optimize the power and the number of antennas to achieve the maximum energy efficiency for the users located in the near-field region. Particularly, this paper considers the resolution constraint in the formulated optimization problem, which is designed to guarantee that interference between users can be neglected. A low-complexity optimization algorithm is proposed to realize the joint optimization of power and antenna number. Specifically, the near-field resolution constraint is first simplified to a polynomial inequality using the Fresnel approximation. Then the fractional objective of maximizing energy efficiency is transformed into a convex optimization subproblem via the Dinkelbach algorithm, and the power allocation is solved for a fixed number of antennas. Finally, the number of antennas is integrally optimized with monotonicity analysis. The simulation results show that the proposed method can significantly improve the system energy efficiency and reduce the antenna overhead under different resolution thresholds, user angles, and distance configurations, which provides a practical reference for the design of green and low-carbon near-field communication systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299271PMC
http://dx.doi.org/10.3390/s25144293DOI Listing

Publication Analysis

Top Keywords

number antennas
16
near-field region
12
energy efficiency
12
region paper
8
resolution constraint
8
near-field
6
number
5
energy-efficient resource
4
resource allocation
4
allocation near-field
4

Similar Publications