Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study multidimensionally investigates the comprehensive effects of (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (). The results demonstrate that LP fermentation significantly alters feed's physical properties and nutritional profile, softening texture, increasing viscosity, and emitting an acidic aroma. Notably, it enhanced contents of cis-9-palmitoleic acid, α-linolenic acid (ALA), and functional amino acids (GABA, L-histidine, and L-asparagine), indicating that fermentation optimized ω-3 fatty acid accumulation and amino acid profiles through the modulation of fatty acid metabolic pathways, thereby improving feed biofunctionality and stress-resistant potential. Further analyses revealed that fermented feed markedly improved intestinal morphology in abalone, promoting villus integrity and upregulating tight junction proteins (ZO-1, Claudin) to reinforce intestinal barrier function. Concurrently, it downregulated inflammatory cytokines (TNF-α, NF-κB, IL-16) while upregulating anti-inflammatory factors (TLR4) and antioxidant-related genes (NRF2/KEAP1 pathway), synergistically mitigating intestinal inflammation and enhancing antioxidant capacity. Sequencing and untargeted metabolomics unveiled that fermented feed substantially remodeled gut microbiota structure, increasing Firmicutes abundance while reducing Bacteroidetes, with the notable enrichment of beneficial genera such as . Metabolite profiling highlighted the significant activation of lipid metabolism, tryptophan pathway, and coenzyme A biosynthesis. A Spearman correlation analysis identified microbiota-metabolite interactions (such as Halomonas' association with isethionic acid) potentially driving growth performance via metabolic microenvironment regulation. In conclusion, LP-fermented feed enhances abalone growth, immune response, and aquaculture efficiency through multi-dimensional synergistic mechanisms (nutritional optimization, intestinal homeostasis regulation, microbiota-metabolome crosstalk), providing critical theoretical foundations for aquafeed development and probiotic applications in aquaculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300273PMC
http://dx.doi.org/10.3390/microorganisms13071603DOI Listing

Publication Analysis

Top Keywords

feed growth
8
intestinal health
8
lp-fermented feed
8
growth performance
8
fatty acid
8
fermented feed
8
feed
6
intestinal
6
acid
6
effects -fermented
4

Similar Publications

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Locoism refers to a neurological disorder in livestock caused by chronic ingestion of locoweeds, which contain toxic alkaloid swainsonine produced by the fungus . Therefore, reducing swainsonine levels not only prevents locoism but may also transform these toxic plants into animal feed. In this study, we identified a pivotal role for the gene in swainsonine biosynthesis.

View Article and Find Full Text PDF

This experiment evaluated the effects of replacing one-third of corn grain in a finishing diet with rye grain (RG) processed using one of three processing methods. Predominately Angus steers (n = 192, initial shrunk BW = 410 ± 20.9 kg) were blocked by source and pen location and assigned to one of four dietary treatments: dry-rolled corn (DRC), unprocessed RG (UNP), dry-rolled RG (DRR) and hammer-milled RG (HMR).

View Article and Find Full Text PDF

Background And Aim: Mycotoxin contamination in poultry feed, particularly with aflatoxin B1 (AFB1) and ochratoxin A (OTA), poses significant threats to broiler health, meat quality, and consumer safety. Toxin binders are commonly used to mitigate these effects; however, their impact on endogenous stem cell activity and overall broiler performance remains underexplored. This study aimed to evaluate the efficacy of a commercial toxin binder in reducing AFB1 and OTA residues in broiler meat, inducing endogenous stem cell production, and improving growth and feed performance indices.

View Article and Find Full Text PDF

Background And Aim: The global shift toward antibiotic-free poultry production necessitates sustainable alternatives to conventional growth promoters. Hydrolyzable tannins (HTs) from plants have shown antimicrobial, antioxidant, and gut-modulatory effects, making them promising feed additives. However, reliance on imported tannins from temperate species limits access for tropical producers, especially in Thailand.

View Article and Find Full Text PDF