A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Study on Laser Surface Texturing and Wettability Control of Silicon Nitride Ceramic. | LitMetric

Study on Laser Surface Texturing and Wettability Control of Silicon Nitride Ceramic.

Micromachines (Basel)

School of Intelligent Manufacturing and Aeronautics, Zhuhai College of Science and Technology, Zhuhai 519040, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silicon nitride (SiN) ceramic is widely used in the production of structural components. The surface wettability is closely related to the service life of materials. Laser surface texturing is considered an effective method for controlling surface wettability by processing specific patterns. This research focused on the laser surface texturing of a SiN ceramic, employing rectangular patterns instead of the typical dimple designs, as these had promising applications in heat transfer and hydrodynamic lubrication. The effects of scanning speed and number of scans on the change of the morphologies and dimensions of the grooves were investigated. The results indicated that the higher scanning speed and fewer number of scans resulted in less damage to the textured surface. As the scanning speed increased, the width and depth of the grooves decreased significantly first, and then fluctuated. Conversely, increasing the number of scans led to an increase in the width and depth of the grooves, eventually stabilizing. The analysis of the elemental composition of different areas on the textured surface presented a notable increase in oxygen content at the grooves, while Si and N levels decreased. It was mainly caused by the chemical reaction between SiN ceramic and oxygen during laser surface texturing in an air environment. This study also assessed the wettability of the textured surface, finding that the contact angle of the water droplet was significantly affected by the groove dimensions. After laser surface texturing, the contact angle increased from 35.51 ± 0.33° to 57.52 ± 1.83°. Improved wettability was associated with smaller groove volume, indicating better hydrophilicity at lower scanning speed and enhanced hydrophobicity with a fewer number of scans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298874PMC
http://dx.doi.org/10.3390/mi16070819DOI Listing

Publication Analysis

Top Keywords

laser surface
20
surface texturing
20
scanning speed
16
number scans
16
sin ceramic
12
textured surface
12
surface
10
silicon nitride
8
surface wettability
8
fewer number
8

Similar Publications