98%
921
2 minutes
20
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS activators on the hydration behavior of blast furnace slag (GGBS)-fly ash (FA) cementitious composites were systematically investigated. Mechanical performance, phase evolution, and microstructural development were analyzed through compressive strength tests, XRD, FTIR, TG-DTG, and SEM-EDS. Results demonstrate that in the SR-CS activator system, which combines with desulfuriation gypsum as sulfate activator, increasing CS content elevates the normal consistency water demand due to the high-polarity, low-solubility Ca(OH) in CS. The SR-CS activator accelerates the early hydration process of cementitious materials, shortening the paste setting time while achieving compressive strengths of 17 MPa at 7 days and 32.4 MPa at 28 days, respectively. Higher fly ash content reduced strength owing to increased unreacted particles and prolonged setting. Conversely, desulfurization gypsum exhibited a sulfate activation effect, with compressive strength peaking at 34.2 MPa with 4 wt% gypsum. Chloride immobilization by C-S-H gel was confirmed, effectively mitigating environmental risks associated with SR. This work establishes a sustainable pathway for developing low-carbon cementitious materials using multi-source solid wastes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298036 | PMC |
http://dx.doi.org/10.3390/ma18143275 | DOI Listing |
J Environ Manage
September 2025
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, PR China.
For meeting requirements of "green steel" and "circular economy", there was great potential and value to synthesize CO adsorbent with low price and excellent performance by using multiple solid wastes. In this study, a novel method was proposed to synthesize zeolite by blast furnace slag. CO adsorption isotherm, thermodynamic and kinetic were investigated comprehensively.
View Article and Find Full Text PDFEnviron Res
September 2025
Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.
Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
With the rapid development of industrialization in China, more and more industrial solid wastes (ISWs) are generated in industrial production processes. Under the pressure for safe disposals or utilization of ISWs as resources, and the demand for soil pollution remediation in China, there have been attempts to incorporate ISWs into agricultural land as soil amendments, while the environmental impacts of ISWs applied on agricultural land have aroused great concerns. This paper presents a comprehensive overview regarding the environmental risks from impacts of 7 types of ISWs (including blast furnace slag, steel slag, magnesium slag, coal-fired flue gas desulfurization gypsum, phosphogypsum, calcium carbide slag, and ammonia-soda residue) applied on agricultural land.
View Article and Find Full Text PDFSci Total Environ
September 2025
Sinosteel Engineering & Technology Co., Ltd.
Iron and steel industry is the largest CO contributor in China's energy end-users, accounting for 15 % of the national emission, whose decarbonization is the key step for carbon neutrality. Blast Furnace and Basic Oxygen Furnace (BF-BOF) process dominates steel production in China, and carbon flow inside that process with multi-layered energy and material network is complex, leading to difficulty in CO emission estimation. Herein, to understand the CO emission and its cut-down potential of iron and steel industry, a carbon counting model is established and typical decarbonization ways are taken into consideration, including energy efficiency improvement, raw material composition reformation and traditional blast furnace technology innovation.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
The global cement industry urgently requires sustainable alternatives to reduce its 2.8 billion tonnes of annual CO₂ emissions. This study investigates maximum feasible cement replacement ratios using regional industrial by-products while maintaining adequate performance characteristics.
View Article and Find Full Text PDF