98%
921
2 minutes
20
CRISPR/Cas9 genome editing holds promise for precise genetic modifications, yet off-target effects remain a concern-particularly in gene families with high sequence similarity. In this study, we present a computational framework for analyzing editing specificity and cross-reactivity in gene families using long-read sequencing data. The pipeline integrates multiplex PCR, NGS, and CRISPECTOR-based analysis to detect and quantify on- and off-target events with high sensitivity. As a use case, we applied this framework to , evaluating on-target editing in thirteen gene families and analyzing off-target cross-reactivity in five representative families. While the biological results are illustrative, the primary contribution lies in the generalizable analysis approach, which can support genome editing studies in complex plant genomes and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293931 | PMC |
http://dx.doi.org/10.3390/cimb47070507 | DOI Listing |
Mol Biol Evol
September 2025
Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA.
Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to mumps virus, a reference human orthorubulavirus.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China.
Entomopathogenic nematode symbiotic bacteria (EPNB) enhance nematode insecticidal capacity through symbiosis. This study cloned the complete 32-kb type III secretion system (T3SS) gene cluster from TT01 using Red/ET recombineering and functionally expressed it in T3SS-deficient HN_xs01. Heterologous T3SS expression significantly enhanced HN_xs01 adhesion and invasion capabilities in CF-203 cells.
View Article and Find Full Text PDFElife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.
Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, 305041, Russia.
Background: The chaperoning system, which is responsible for protein homeostasis, plays a significant role in cardiovascular diseases. Among molecular chaperones or heat shock proteins (HSPs), the HSP40 family, the main co-chaperone of HSP70, remains largely underexplored, especially in ischemic heart disease (IHD) risk.
Materials And Results: We genotyped 834 IHD patients and 1,328 healthy controls for three SNPs (rs2034598 and rs7189628 DNAJA2 and rs4926222 DNAJB1) using probe-based real-time PCR.