Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
5D hyperspectral light field (H-LF) integrates multi-angular and multi-spectral observation, offering a comprehensive opportunity to capture more detailed information from biological samples. In this article, we integrate hyperspectral light field microscopy imaging to analyze H&E-stained whole slide images (WSIs) of colorectal cancer (CRC). Specifically, we design a triple separable transformer encoder (HLFTST) that efficiently extracts features by decoupling the 5D H-LF data into lower-dimensional components and applying self-attention for global interaction. We also introduce a text encoder-decoder to align H-LF features with language, enabling automatic cell classification and pathology report generation through a three-stage training pipeline. Experiments show our method outperforms 2D, 3D, and 4D baselines, improving precision by up to 4.88% and F1 score by 4.21% across five CRC cell categories. Additionally, it generates meaningful pathology descriptions, highlighting its potential for enhancing diagnostics and supporting personalized treatment in broader biomedical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12303046 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.112987 | DOI Listing |