Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemical modifications are the standard for small interfering RNAs (siRNAs) in therapeutic applications, but predicting their off-target effects remains a significant challenge. Current approaches often rely on sequence-based encodings, which fail to fully capture the structural and protein-RNA interaction details critical for off-target prediction. In this study, we developed a framework to generate reproducible structure-based chemical features, incorporating both molecular fingerprints and computationally derived siRNA-hAgo2 complex structures. Using an RNA-Seq off-target study, we generated over 30,000 siRNA-gene data points and systematically compared nine distinct types of feature representation strategies. Among the datasets, the highest predictive performance was achieved by Dataset 3, which used extended connectivity fingerprints (ECFPs) to encode siRNA and mRNA features. An energy-minimized dataset (7R), representing siRNA-hAgo2 structural alignments, was the second-best performer, underscoring the value of incorporating reproducible structural information into feature engineering. Our findings demonstrate that combining detailed structural representations with sequence-based features enables the generation of robust, reproducible chemical features for machine learning models, offering a promising path forward for off-target prediction and siRNA therapeutic design that can be seamlessly extended to include any modification, such as clinically relevant 2'-F or 2'-OMe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296190PMC
http://dx.doi.org/10.3390/ijms26146795DOI Listing

Publication Analysis

Top Keywords

machine learning
8
molecular fingerprints
8
off-target prediction
8
chemical features
8
off-target
5
sirna features-automated
4
features-automated machine
4
learning molecular
4
fingerprints structures
4
structures therapeutic
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF