Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microencapsulation of olive oil plays an important role in food science and technology by controlling oxidative deterioration, improving emulsification, and preserving bioactive properties, ultimately benefiting product formulations in both the culinary and medical fields. This study is important in that it reveals the effect of the microencapsulation process on aroma compounds and provides a data set for investigating the potential use of powdered products. In this study, the microencapsulation of emulsions prepared with carbohydrate-protein-based coating materials of oils obtained from two different olive varieties (Nizip and Kilis Yaglik) grown in the Southeastern Anatolia Region of Turkey was carried out via the freeze-drying method. In the study, emulsions were formed using protein isolate (WPI) and maltodextrin (MD) at different ratios (1:1, 1:4, 1:10) as wall materials, and microcapsule powder products were obtained via the freeze-drying method. While the physical properties of the emulsions and microcapsules were examined, the oxidative stability, fatty acid profile, and aroma compounds were examined in oils and microcapsules. The changes in oxidative stability and aroma compounds were also monitored during storage (0, 45, and 90 days at room temperature). According to the data obtained, it was observed that the emulsion stability increased with increasing maltodextrin content. Similarly, the microencapsulation efficiency was also found to change in direct proportion to the maltodextrin ratio. Encapsulated samples showed better oxidative stability than oils. Oleic acid was the predominant fatty acid in both oils and microencapsulated products, followed by palmitic and linoleic acids. According to the aroma compounds, the microcapsules obtained from both types of oils were clearly separated from the oils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294390PMC
http://dx.doi.org/10.3390/foods14142439DOI Listing

Publication Analysis

Top Keywords

aroma compounds
16
fatty acid
12
oxidative stability
12
southeastern anatolia
8
freeze-drying method
8
oils
7
aroma
5
acid aroma
4
aroma profiles
4
profiles microencapsulated
4

Similar Publications

Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.

View Article and Find Full Text PDF

This study investigated the formation of characteristic aroma compounds in braised pork during electromagnetic cooking, focusing on the effect of added seasonings on lipid oxidation and the Maillard reaction. The accelerated lipid oxidation led to a rapid increase in the levels of most characteristic aldehydes, 1-octen-3-ol, and 2-pentylfuran during the temperature-rising stage (S0-S2) and the simmering stage (S3-S4) in braised pork. However, the addition of seasonings inhibited polyunsaturated fatty acid oxidation, reducing the levels of these lipid-derived aroma compounds during the sauce thickening stage (S5).

View Article and Find Full Text PDF

This study presents the first comprehensive sensory-guided investigation into the odor-active compounds of dried hemp ( L.) flowers. Using gas chromatography-olfactometry (GC-O) in combination with aroma extract dilution analysis (AEDA), 52 odor-active compounds were identified across six cannabidiol-rich cultivars.

View Article and Find Full Text PDF

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

Jasmine tea: unveiling the secrets of processing, flavor characteristics, and potential health benefits.

Crit Rev Food Sci Nutr

September 2025

Key Laboratory of Tea Science of Ministry of Education and Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha, China.

Jasmine tea, a further processing tea made by scenting green, black, oolong, or other tea with jasmine flowers, is widely appreciated worldwide for its fragrant aroma, refreshing taste, and beneficial health effects. The production of jasmine tea is a meticulous and complex process that involves chemical reactions, physical adsorption, and flavor interaction effects at the sensory level between jasmine and tea. This paper provides a comprehensive review of the research on the processing technology, characteristic aroma formation, nonvolatile compounds, and health benefits of jasmine tea.

View Article and Find Full Text PDF