Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this review article, statistical mechanisms of oxidative modification reactions in various organic compounds under the influence of reactive oxygen species (ROS) generated by cold atmospheric plasma (CAP) are investigated and analyzed based on reactive molecular dynamics (MD) simulations. As an efficient and hygienic advanced oxidation technology, CAP demonstrates tremendous potential in fields such as biomedicine and environmental protection. Through simulations, this paper provides a detailed analysis of the interaction mechanisms between ROS and components of biological tissues and environmental toxins. In this paper, we review the reactions involving four major ROS (OH radicals, O atoms, O3 molecules, and H2O2 molecules) and organic compounds, including proteins, DNA, polysaccharides, fatty acids, antibiotics, and mycotoxins. Atomic-level analysis reveals various oxidative modification reactions induced by ROS and their resulting products, including dehydrogenation reactions, bond-formation reactions, oxygen-addition reactions, and bond-cleavage reactions. Additionally, the study elucidates the role of active functional groups in various organic compounds, the presence of special elements, and the specific reactive nature of H2O2. Furthermore, the influence of different ROS species and concentrations on reaction types is explored, aiming to provide a solid theoretical foundation for the application of CAP technology in biomedicine and environmental remediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292654 | PMC |
http://dx.doi.org/10.3390/biom15070952 | DOI Listing |