Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early detection of ossification of the posterior longitudinal ligament (OPLL) is hampered by the late onset of neurological symptoms, so we built and validated an interpretable machine learning model to identify OPLL during routine health examinations. We retrospectively analyzed 1442 Japanese adults screened between 2020 and 2023, including 432 imaging-confirmed cases, after median imputation, one-hot encoding, Random Forest feature selection that reduced 235 variables to 20, and class-balance correction with SMOTE. Logistic regression, Random Forest, Gradient Boosting, and XGBoost models were tuned using a 5-fold cross-validated grid search, in which a re-estimated logistic regression yielded odds ratios for clinical interpretation. The logistic model achieved 65% accuracy and an AUROC of 0.69 (95% CI 0.66-0.76), matching tree-based models, yet with fewer false-negatives. Advanced age (OR 1.60, 95% CI 1.27-2.00) and elevated CA19-9 (OR 1.24, 95% CI 1.00-1.35) independently increased OPLL odds. This concise, explainable tool could facilitate early recognition of OPLL, reduce unnecessary follow-up, and enable timely preventive interventions in high-volume screening programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292339PMC
http://dx.doi.org/10.3390/bioengineering12070749DOI Listing

Publication Analysis

Top Keywords

machine learning
8
early detection
8
detection ossification
8
ossification posterior
8
posterior longitudinal
8
longitudinal ligament
8
random forest
8
logistic regression
8
learning approaches
4
approaches early
4

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF