Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The stress-strain curve is a key indicator of the mechanical behavior of polymeric materials and plays a vital role in optimizing the performance of solution-polymerized styrene-butadiene rubber (SSBR). Molecular dynamics (MD) simulations enable the investigation of microscale deformation mechanisms, yet their use of unrealistically high strain rates leads to stress values that diverge significantly from experimental results. To address this discrepancy, we proposed a weighted fusion framework that integrates transfer learning with a hybrid long short-term memory-multilayer perceptron (LSTM-MLP) model and the eXtreme Gradient Boosting (XGBoost) algorithm. A dataset of 100 simulated stress-strain curves was generated from 20 distinct SSBR molecular systems across five strain rates, supplemented with five experimental curves for SSBR (grade 2557TH) under varying tensile rates. The model was pretrained on the simulated data and fine-tuned using the limited experimental data, enabling stress-strain predictions consistent with experiments. Comparative analyses against alternative machine learning baselines confirmed the model's superior accuracy. Additionally, correlation analysis revealed how the four structural units of SSBR-styrene, 1,2-butadiene, cis-1,4-butadiene, and trans-1,4-butadiene-influence mechanical behavior, offering theoretical insights for targeted performance enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202500386DOI Listing

Publication Analysis

Top Keywords

transfer learning
8
molecular dynamics
8
dynamics simulations
8
mechanical behavior
8
ssbr molecular
8
strain rates
8
learning polymer
4
polymer mechanics
4
mechanics fusion
4
fusion approach
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF