Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S021972002550009X | DOI Listing |