98%
921
2 minutes
20
The use of acid to obscure human remains is a tactic frequently associated with criminal activity, yet research on its effects on human dentition remains inconsistent. Dental tissues, among the body's most durable components, play a vital role in forensic identification. However, existing studies on acid dissolution of dentition often lack standardized methods, resulting in findings that are difficult to reproduce or generalize. This study addresses these gaps by examining the effects of hydrochloric acid (HCl) on permanent maxillary molars under controlled conditions, using a replicable methodology that incorporates experimental controls and evaluates the impact of handling techniques such as removal, rinsing, and drying. Five permanent maxillary molar samples were submerged in HCl (37 %) under varied handling conditions. Findings reveal that undisturbed samples dissolved more slowly than those subjected to periodic removal and rinsing, which accelerated dissolution rates by over 100 %. This highlights the significant influence of handling techniques on experimental outcomes. The study also identifies inconsistent reporting and the absence of standardized protocols in prior research as critical barriers to reproducibility. By providing a clear and replicable framework, this study advances understanding of the dissolution process and emphasizes the importance of methodological rigor in forensic science. These findings have broader implications for improving the reliability of forensic evidence and ensuring its applicability in criminal investigations. Addressing these issues is essential for enhancing public trust in forensic methods and strengthening their role in the justice system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2025.112580 | DOI Listing |
Clin Anat
September 2025
Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.
This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.
View Article and Find Full Text PDFForensic Sci Int Synerg
June 2025
Department of Anthropology and Middle Eastern Cultures Mississippi State University, 340 Lee Blvd., Starkville, MS, 39762, USA.
Chaos theory, initially developed by Edward Lorenz, a mathematician and meteorologist at the Massachusetts Institute of Technology, has evolved from a theory of the natural and physical sciences to a theory that has broad, interdisciplinary applications. Fundamentally, chaos theory connects various scientific disciplines by explaining how seemingly random behaviors that happen in non-linear or "chaotic" systems, no matter how minor, can lead to major consequences. While forensic anthropology is often considered an a-theoretical subfield of anthropology, the discipline has witnessed a proliferation of theoretical publications in recent years.
View Article and Find Full Text PDFFront Pharmacol
August 2025
General Surgery Department Three, Gansu Province Central Hospital, Lanzhou, China.
Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.
View Article and Find Full Text PDFAnalyst
September 2025
School of Chemical Sciences, Indian Institute of Technology, Mandi, Himachal Pradesh 175005, India.
An imino-linked dansyl-carbazole molecular system, DASH, is designed and synthesized. This system (DASH) is rationalized in such a way that it works as a suitable template for the detection of date rape drugs, gamma-butyrolactone (GBL) and gamma-valerolactone (GVL), in addition to latent fingerprint detection. Both rape drug and latent fingerprint detection are important aspects of drug abuse-related crimes in forensic analysis.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China. Electronic address:
With the development of nanomedicine and ultrasound technology, ultrasound-enhanced contrast agents and treatment platforms based on nanomaterials have become important tools for tumor diagnosis and treatment, owing to their high safety profile, low cost and excellent biocompatibility. This review comprehensively discusses the classification and mechanism of nanomaterials in enhancing ultrasound imaging and treatment. It encompasses organic nanomaterials, including nanobubbles and polymer nanoparticles, and as well as inorganic nanomaterials, such as metal nanoparticles and metal oxide nanoparticles.
View Article and Find Full Text PDF