98%
921
2 minutes
20
Background: Although several evidence demonstrates a "gut-microbiota-brain axis", suggesting a bidirectional communication between gut microbiota and the central nervous system, less is known about a possible link between the gut and the peripheral nervous system, including the inner ear.
Methods: Here, we investigated the impact of intestinal inflammation and the modulation of gut microbiota through fecal microbiota transplantation on hearing sensitivity. Female C57BL/6 mice were assigned to four groups: control (Ctrl), DSS-induced colitis (DSS), FMT from patients with active ulcerative colitis (FMT aUC), and FMT from patients with ulcerative colitis in remission (FMT rUC). Auditory function was evaluated by auditory brainstem responses (ABR). Morphological and molecular analyses on cochlear tissues were performed using immunofluorescence, histological staining, and Western blot to assess inflammation, oxidative stress, and blood-labyrinth barrier integrity. Donor microbiota composition was characterized by 16S rRNA sequencing, and systemic inflammation was evaluated by measuring serum lipopolysaccharide (LPS) levels.
Results: We found that intestinal dysbiosis is associated with functional, morphological, and molecular alterations in the cochlea, such as increased oxidative stress, inflammation, and altered blood-labyrinth barrier permeability. This leads to macrophage infiltration and immune response activation through the MyD88/NF-κB pathway. Notably, these effects were exacerbated by FMT from subjects with aUC, while FMT from patients with rUC provided a protective effect on cochlear functions.
Conclusions: Overall, our findings suggest that gut inflammation, microbiota alteration, or its therapeutic modulation can impact inner ear pathology: worsening gut inflammatory status negatively affects hearing sensitivity, while the restoration of gut microbiota positively impacts auditory function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297715 | PMC |
http://dx.doi.org/10.1186/s12964-025-02338-1 | DOI Listing |
Nutr Rev
September 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDFPLoS One
September 2025
School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.
The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.
View Article and Find Full Text PDF