98%
921
2 minutes
20
Tumor acidosis is a consequence of altered metabolism that primarily takes place due to lactate secretion from anaerobic glycolysis. As a result, many regions within the tumors are chronically hypoxic and acidic. To measure the intratumor pH dynamically, we have fabricated a biocompatible pH nanoparticle sensor using surface-enhanced Raman spectroscopy (SERS-pNPS) and monitored continuous pH levels in three-dimensional multicellular spheroids. The 3D multicellular spheroids were cultured using a micro-well array chip made of polydimethylsiloxane (PDMS). The SERS-pNPS were synthesized by linking 4-Mercaptobenzoic acid (4-MBA) to silver nanoparticles (AgNPs) of size 50 nm. The calibration curve demonstrates a linear correlation between the ratio of Raman peak intensities (1378 cm/1620 cm) with the pH level. The sensor exhibits a detection limit of pH 4.4 and demonstrates linearity within the physiological pH range (pH 4.4-pH 8.23). The SERS-pNPS was applied for pH measurement in different 3D co-cultured spheroid models such as lung cancer (A549-NIH3T3), breast cancer (MCF-NIH3T3), colon cancer (HCT8-NIH3T3) and mono-cultured spheroids using fibroblast (NIH3T3) cells. The detailed analysis indicated that the 3D co-cultured cancerous tumor models have 16% more acidic microenvironment as compared to 3D mono-cultured spheroid model. Also, a presence of a decreasing pH gradient from peripheral to the core region is observed in both the cases indicating acidosis in the core region. The SERS-pNPS platform facilitates a non-invasive and dynamic pH tracking, and thus offers an improved insight into the acidic microenvironment in various tumor models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/adf47f | DOI Listing |
Biomater Sci
September 2025
Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.
View Article and Find Full Text PDFJ Biophotonics
September 2025
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA.
Ovarian cancer (OvCa) remains the leading cause of gynecological cancer mortality, with most patients developing chemoresistance. Drug repurposing offers promising alternatives, with mebendazole (MBZ) showing anticancer activity. This study evaluates MBZ efficacy using Spectral Domain Optical Coherence Tomography (SD-OCT).
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.
View Article and Find Full Text PDFOncogene
September 2025
Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.
View Article and Find Full Text PDF