Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The molecular-level characterization of glycans, a challenging yet highly desirable goal, is crucial for the comprehensive advancement of glycosciences. Despite significant advances in analytical techniques, including NMR and mass spectrometry, structural and configurational complexity hinders the ability to identify carbohydrates, especially high-order saccharides with regioisomeric glycosidic linkages. In this article, we present a computational methodology that utilizes a quantum tunneling method coupled with machine learning (ML) to recognize a wide range of blood antigens simultaneously. Random forest classifier with SHapley Additive exPlanations (SHAP) interpretability performs rapid quantum profiling of all considered molecules with good precision and sensitivity. Our proposed ML-enhanced quantum methodology offers a powerful alternative to conventional techniques, facilitating accurate and high-throughput characterization of carbohydrates by performing "sugar calling" from their transmission signatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5c01461DOI Listing

Publication Analysis

Top Keywords

machine learning
8
blood antigens
8
learning boosted
4
boosted quantum-profiling
4
quantum-profiling blood
4
antigens molecular-level
4
molecular-level characterization
4
characterization glycans
4
glycans challenging
4
challenging highly
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF