Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Analyzing metabolites using mass spectrometry provides valuable insight into an individual's health or disease status. However, various sources of experimental variation can be introduced during sample handling, preparation, and measurement, which can negatively affect the data. Quality assurance and quality control practices are essential to ensuring accurate and reproducible metabolomics data. These practices include measuring reference samples to monitor instrument stability, blank samples to evaluate the background signal, and strategies to correct for changes in instrumental performance. In this context, we introduce mzQuality, a user-friendly, open-source R-Shiny app designed to assess and correct technical variations in mass spectrometry-based metabolomics data. It processes peak-integrated data independently of vendor software and provides essential quality control features, including batch correction, outlier detection, and background signal assessment, and it visualizes trends in signal or retention time. We demonstrate its functionality using a data set of 419 samples measured across six batches, including quality control samples. mzQuality visualizes data through sample plots, PCA plots, and violin plots, which illustrate its ability to reduce the effect of experiment variation. Compound quality is further assessed by evaluating the relative standard deviation of quality control samples and the background signal from blank samples. Based on these quality metrics, compounds are classified into confidence levels. mzQuality provides an accessible solution to improve the data quality without requiring prior programming skills. Its customizable settings integrate seamlessly into research workflows, enhancing the accuracy and reproducibility of the metabolomics data. Additionally, with an R-compatible output, the data are ready for statistical analysis and biological interpretation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333366 | PMC |
http://dx.doi.org/10.1021/jasms.5c00073 | DOI Listing |