New QSAR Models to Predict Human Transthyretin Disruption by Per- and Polyfluoroalkyl Substances (PFAS): Development and Application.

Toxics

QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their potential thyroid hormone system disruption by binding to human transthyretin (hTTR). However, the amount of experimental data is scarce. In this work, new classification and regression QSARs were developed to predict the hTTR disruption based on experimental data measured for 134 PFAS. Bootstrapping, randomization procedures, and external validation were used to check for overfitting, to avoid random correlations, and to evaluate the predictivity of the QSARs, respectively. The best QSARs were characterized by good performances (e.g., training and test accuracies in classification of 0.89 and 0.85, respectively; R, Q, and Q in regression of 0.81, 0.77, and 0.82, respectively) and significantly broader domains compared to the few existing similar models. The application of QSARs application to the OECD List of PFAS allowed for the identification of structural categories of major concern, such as per- and polyfluoroalkyl ether-based, perfluoroalkyl carbonyl, and perfluoroalkane sulfonyl compounds. Forty-nine PFAS showed a stronger binding affinity to hTTR than the natural ligand T4. Uncertainty quantification for each model and prediction further enhanced the reliability assessment of predictions. The implementation of the new QSARs in non-commercial software facilitates their application to support future research efforts and regulatory actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300718PMC
http://dx.doi.org/10.3390/toxics13070590DOI Listing

Publication Analysis

Top Keywords

per- polyfluoroalkyl
12
human transthyretin
8
polyfluoroalkyl substances
8
substances pfas
8
experimental data
8
pfas
5
qsars
5
qsar models
4
models predict
4
predict human
4

Similar Publications

Development of a certified reference material for per- and polyfluoroalkyl substances (PFAS) in textiles.

Anal Bioanal Chem

September 2025

Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.

Per- and polyfluoroalkyl substances (PFASs) are a large group of emerging organic pollutants that contaminate the environment, food, and consumer products. Textiles and other outdoor products are a major source of PFAS exposure due to their water-repellent impregnations. Determination of PFASs in textiles is increasingly important for enhancing their contribution to the circular economy.

View Article and Find Full Text PDF

PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.

View Article and Find Full Text PDF

Sweat-amplified dermal transfer and combined toxicity of per- and polyfluoroalkyl substances and organophosphate esters mixtures in children's textiles.

Sci Total Environ

September 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

The widespread application of chemical additives in textiles raises concerns about dermal exposure, especially in children. We analyzed 28 per- and polyfluoroalkyl substances (PFAS) and 9 organophosphate esters (OPEs) in household textiles and children's garments. PFAS were detected in 87.

View Article and Find Full Text PDF

Mapping PFAS behavior via meta-analysis of soil dynamics, predictive modeling and policy integration.

Sci Total Environ

September 2025

University Hohenheim, Department of Process Analytics and Cereal Science, Stuttgart, 70599, Germany.

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with increasing prevalence in agricultural soils, primarily introduced through biosolid application, wastewater irrigation, and atmospheric deposition. This review provides a meta-analysis of terminologies across 145 peer-reviewed studies, identifying inconsistency in the classification of PFAS subgroups-such as "long-chain vs. short-chain," "precursors," and "emerging PFAS"-which hinders regulatory harmonization and model calibration.

View Article and Find Full Text PDF

Assessment of particle-bound PFAS in ambient air from a coastal urban environment in South Florida.

J Hazard Mater

September 2025

Institute of Environment, Florida International University, 3000 NE 151st St., Biscayne Bay Campus, North Miami, FL 33181, USA; Department of Chemistry and Biochemistry. Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL 33199, USA. Electronic address: nsoar

Per- and polyfluoroalkyl substances (PFAS) are man-made pollutants widely used in industrial and consumer products, known to pose significant health risks. While their occurrence in water, soil, and food has been extensively studied, limited research has focused on ambient air, particularly in the U.S.

View Article and Find Full Text PDF