Metabolic Changes in Zebrafish Larvae Infected with : A Widely Targeted Metabolomic Analysis.

Metabolites

Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To explore the metabolic changes in zebrafish larvae after infection with , this study adopted a widely targeted metabolomic approach to analyze the changes in the overall metabolic profiles of zebrafish larvae infected for 5 days.

Methods: Data were collected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometry data were processed using Analyst 1.6.3 and MultiQuant 3.0.3 software, and multivariate statistical analysis was carried out. The KEGG database, HMDB database, and CHEBI database were used to screen and identify differential metabolites, and metabolic pathway enrichment analysis was performed through KEGG pathways.

Results: A total of 329 metabolites were detected, among which 61 differential metabolites were screened. Specifically, 41 metabolites, such as kynurenine, isoallolithocholic acid, 2'-deoxyguanosine, indole-3-carboxaldehyde, and L-lactic acid, were downregulated, while 20 metabolites, such as L-palmitoylcarnitine, myristoyl-L-carnitine, dodecanoylcarnitine, 2-isopropyl-malic acid, and 2-methylsuccinic acid, were upregulated. KEGG metabolic pathway enrichment analysis indicated that these differential metabolites were mainly involved in metabolic pathways such as pyrimidine metabolism, nucleotide metabolism, the pentose phosphate pathway, and purine metabolism.

Conclusions: This study demonstrated that significant changes occurred in multiple metabolites and metabolic pathways in zebrafish larvae after infection with . The research results have improved the understanding of zebrafish as a model organism in the field of research and laid a solid foundation for subsequent metabolomic-related research using zebrafish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298622PMC
http://dx.doi.org/10.3390/metabo15070449DOI Listing

Publication Analysis

Top Keywords

zebrafish larvae
16
differential metabolites
12
metabolic changes
8
changes zebrafish
8
larvae infected
8
targeted metabolomic
8
larvae infection
8
mass spectrometry
8
metabolites metabolic
8
metabolic pathway
8

Similar Publications

Mutation of ube3a causes developmental abnormalities and autism-like molecular and behavioral alterations in zebrafish.

Brain Res Bull

September 2025

Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan. Electronic address:

Mutations in the UBE3A gene are responsible for neurodevelopmental disorders (NDDs), including Angelman syndrome (AS), which is characterized by developmental delays, impaired motor coordination, and cognitive disabilities. In recent years, UBE3A mutations have also been linked to autism spectrum disorders (ASD), due to their significant role in synaptic plasticity and cognitive function. Although substantial research has utilized mammalian models, the zebrafish (Danio rerio) provides unique opportunities to investigate gene functions owing to their transparent embryos, rapid development, and suitability for large-scale genetic and behavioral studies.

View Article and Find Full Text PDF

Target the Heart: A New Axis of Alzheimer's Disease Prevention.

J Dement Alzheimers Dis

June 2025

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.

Background/objective: Cyclosporine A and other calcineurin inhibitors have been identified as prospective treatments for preventing Alzheimer's disease. We previously found that calcineurin inhibitors elicit a unique behavioral profile in zebrafish larvae, characterized by increased activity, acoustic hyperexcitability, and reduced visually guided behaviors. Screening a large library of FDA-approved compounds using Z-LaP Tracker revealed that some heart medications produce a similar behavioral profile, suggesting these drugs may exert calcineurin-inhibitor-like effects relevant to prevent-ing or ameliorating Alzheimer's disease.

View Article and Find Full Text PDF

Neurotoxic Effects of 4-Hydroxy-4'-Isopropoxydiphenylsulfone Exposure on Zebrafish Embryos.

Environ Pollut

September 2025

Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.

The central nervous system (CNS) is particularly vulnerable to endocrine-disrupting chemicals, especially bisphenol analogues. Bisphenol A (BPA), a widely studied compound, has been associated with various neurological disorders, leading to restrictions on its use and the subsequent adoption of alternative chemicals such as 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP). However, concerns regarding the potential neurotoxicity of BPSIP have emerged.

View Article and Find Full Text PDF

Effects of rosmarinic acid on the fibrotic toxicity of amylin in a zebrafish model.

Biochem Biophys Res Commun

September 2025

Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan. Electronic address:

Amylin aggregation and the resulting fibrotic toxicity are associated with the pathogenesis of type 2 diabetes mellitus (T2DM). This study evaluated the protective effects of rosmarinic acid (RA) against amylin-induced toxicity in a zebrafish model. Healthy zebrafish embryos from cell stages 1-8 were microinjected with a mixture of 50 μM amylin and 20 μM thioflavin-T (ThT) to induce amylin aggregation and fluorescently label fibril deposition.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF