Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The mitochondrial regulator MNRR1 is reduced in several pathologies, including the mitochondrial heteroplasmic disease MELAS, and genetic restoration of its level normalizes the pathological phenotype. Here, we investigate the upstream mechanism that reduces MNRR1 levels. We have identified the hypoxic regulator HIF2α to bind the MNRR1 promoter and inhibit transcription by competing with RBPJκ. In MELAS cells, there is a pseudohypoxic state that transcriptionally induces and stabilizes HIF2α protein. MELAS cybrids harboring the m.3243A > G mutation display reduced levels of prolyl hydroxylase 3 (PHD3), which contributes to the HIF2α stabilization. These results prompted a search for compounds that could increase MNRR1 levels pharmacologically. The screening of a 2400-compound library uncovered the antifungal drug nitazoxanide and its metabolite tizoxanide as enhancers of transcription. We show that treating MELAS cybrids with tizoxanide restores cellular respiration, enhances mitophagy, and, importantly, shifts heteroplasmy toward wild-type mtDNA. Furthermore, in fibroblasts from MELAS patients, the compound improves mitochondrial biogenesis, enhances autophagy, and protects from LPS-induced inflammation. Mechanistically, nitazoxanide reduces HIF2α levels by increasing PHD3. Chemical activation of MNRR1 is thus a potential strategy to improve mitochondrial deficits seen in MELAS. Finally, our data suggests a broader physiological pathway wherein two proteins, induced under severe (1% O2; HIF2α) and moderate (4% O2; MNRR1) hypoxic conditions, regulate each other inversely.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293968 | PMC |
http://dx.doi.org/10.3390/cells14141078 | DOI Listing |