Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Detecting Pulmonary Embolism (PE) is critical for effective patient care, and Artificial Intelligence (AI) has shown promise in supporting radiologists in this task. Integrating AI into radiology workflows requires not only evaluation of its diagnostic accuracy but also assessment of its acceptance among clinical staff.

Objective: This study aims to evaluate the performance of an AI algorithm in detecting pulmonary embolisms (PEs) on contrast-enhanced computed tomography pulmonary angiograms (CTPAs) and to assess the level of acceptance of the algorithm among radiology department staff.

Methods: This retrospective study analyzed anonymized computed tomography pulmonary angiography (CTPA) data from a university clinic. Surveys were conducted at three and nine months after the implementation of a commercially available AI algorithm designed to flag CTPA scans with suspected PE. A thoracic radiologist and a cardiac radiologist served as the reference standard for evaluating the performance of the algorithm. The AI analyzed 59 CTPA cases during the initial evaluation and 46 cases in the follow-up assessment.

Results: In the first evaluation, the AI algorithm demonstrated a sensitivity of 84.6% and a specificity of 94.3%. By the second evaluation, its performance had improved, achieving a sensitivity of 90.9% and a specificity of 96.7%. Radiologists' acceptance of the AI tool increased over time. Nevertheless, despite this growing acceptance, many radiologists expressed a preference for hiring an additional physician over adopting the AI solution if the costs were comparable.

Discussion: Our study demonstrated high sensitivity and specificity of the AI algorithm, with improved performance over time and a reduced rate of unanalyzed scans. These improvements likely reflect both algorithmic refinement and better data integration. Departmental feedback indicated growing user confidence and trust in the tool. However, many radiologists continued to prefer the addition of a resident over reliance on the algorithm. Overall, the AI showed promise as a supportive "second-look" tool in emergency radiology settings.

Conclusion: The AI algorithm demonstrated diagnostic performance comparable to that reported in similar studies for detecting PE on CTPA, with both sensitivity and specificity showing improvement over time. Radiologists' acceptance of the algorithm increased throughout the study period, underscoring its potential as a complementary tool to physician expertise in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115734056367860250630072749DOI Listing

Publication Analysis

Top Keywords

detecting pulmonary
12
algorithm
9
artificial intelligence
8
pulmonary embolisms
8
performance algorithm
8
computed tomography
8
tomography pulmonary
8
acceptance algorithm
8
algorithm demonstrated
8
radiologists' acceptance
8

Similar Publications

Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

To explore the feasibility and accuracy of predicting respiratory tract infections (RTIs) using physiological data obtained from consumer-grade smartwatches. The study used smartwatches and paired mobile applications to continuously collect physiological parameters while participants slept. A personalized baseline model was established using multi-day data, followed by the construction of RTIs risk prediction algorithm based on deviations from physiological parameter trends.

View Article and Find Full Text PDF

Background: Cancer screening nonadherence persists among adults who are deaf, deafblind, and hard of hearing (DDBHH). These barriers span individual, clinician, and health care system levels, contributing to difficulties understanding cancer information, accessing screening services, and following treatment directives. Critical communication barriers include ineffective patient-physician communication, limited access to American Sign Language (ASL) cancer information, misconceptions about medical procedures, insurance navigation difficulties, and intersectional barriers for multiply marginalized individuals.

View Article and Find Full Text PDF

Circovirus porcine (PCV) is a widespread pathogen in swine, consisting of four species: PCV1, PCV2, PCV3, and PCV4. Coinfection with other pathogens exacerbates the severity of Porcine Respiratory Disease Complex (PRDC), leading to significant economic losses. In Brazil, pleurisy lesions in pigs, often due to chronic inflammation from bacterial, viral, and environmental factors, are a major economic concern.

View Article and Find Full Text PDF