Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The axolotl (Ambystoma mexicanum) possesses a remarkable ability to regenerate tissues. Following limb amputation, a blastema of progenitor cells forms, expands, and reconstructs all distal structures, implying that mature cells near the wound retain positional memory along the proximal-distal (PD) axis. Key regulators of positional identity, such as Prod1 and Tig1, promote proximalisation-a shift toward a more proximal identity-when overexpressed, but the mechanisms governing this process remain unclear. In this study, we tracked changes in cellular density along the PD axis of regenerating axolotl limbs after transfecting distal blastemas with Tig1 and Prod1, mapping the spatiotemporal distribution of transfected cells and their progeny throughout regeneration. Using a continuous mathematical modelling approach, we predict a proximalisation velocity induced by factors eliciting proximal identity as Prod1 and Tig1, which is consistent with a proximalisation force driven by a positional potential. Our findings provide a foundational framework for understanding how cells acquire positional identity to guide limb regeneration in axolotls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290015PMC
http://dx.doi.org/10.1038/s41598-025-10527-8DOI Listing

Publication Analysis

Top Keywords

limb regeneration
8
positional identity
8
identity prod1
8
prod1 tig1
8
modeling proximalisation
4
proximalisation axolotl
4
axolotl limb
4
regeneration axolotl
4
axolotl ambystoma
4
ambystoma mexicanum
4

Similar Publications

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Progress in immunoregulatory mechanisms during distraction osteogenesis.

Front Bioeng Biotechnol

August 2025

Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.

Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFU) are a prevalent complication of diabetes, leading to significant morbidity, mortality, and amputation rates. Chronic non-healing DFU often result from peripheral neuropathy, microvascular issues, and infection, with poor blood and oxygen supply being critical factors in delayed healing. The development of new treatments to promote blood supply and accelerate ulcer healing is a significant area of research for DFU management.

View Article and Find Full Text PDF

This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.

View Article and Find Full Text PDF

Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial.

View Article and Find Full Text PDF