Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Per- and polyfluoroalkyl substances (PFAS), pervasive environmental contaminants, are increasingly linked to breast cancer, yet their molecular mechanisms remain unclear. This study integrates network toxicology and bioinformatics to elucidate PFAS-associated pathways and prognostic biomarkers in breast cancer.

Methods: Using the TCGA-BRCA dataset, we identified differentially expressed genes (DEGs) between normal and breast cancer tissues. We cross-referenced these genes with PFAS-related genes from the Comparative Toxicogenomics Database (CTD) to identify common targets. Enrichment analysis, network construction, and survival analysis were performed to elucidate the biological mechanisms and prognostic value. The CIBERSORT algorithm assessed immune cell infiltration, and molecular docking evaluated interactions between PFAS compounds and key genes.

Results: We identified 141 common DEGs, significantly enriched in pathways related to cytokine activity, growth factor activity, and chemokine receptor binding. A PFAS-toxicity target-breast cancer network illustrated potential mechanistic pathways. Six key prognostic genes (MRPL13, LEF1, ATP7B, IFNG, SFRP1, DNMT3B) were identified, forming a risk model that stratified patients with significant differences in survival. Higher risk scores were associated with advanced stages, specific histological types, and hormone receptor statuses. Immune cell infiltration analysis revealed distinct profiles between high and low-risk groups, with high-risk patients exhibiting elevated activated T cells and macrophages. Molecular docking showed strong interactions between PFAS compounds (PFOS and PFDE) and DNMT3B, suggesting potential gene function disruptions.

Conclusion: PFAS exposure is linked to altered gene expression, immune cell infiltration, and potential disruptions in key genes, contributing to breast cancer development and progression. These findings provide insights into potential therapeutic targets and underline the importance of addressing environmental factors in breast cancer management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290136PMC
http://dx.doi.org/10.1007/s12672-025-03084-zDOI Listing

Publication Analysis

Top Keywords

breast cancer
20
molecular docking
12
immune cell
12
cell infiltration
12
network toxicology
8
toxicology bioinformatics
8
prognostic biomarkers
8
molecular mechanisms
8
interactions pfas
8
pfas compounds
8

Similar Publications

Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.

View Article and Find Full Text PDF

Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.

View Article and Find Full Text PDF

Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.

View Article and Find Full Text PDF