Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small cell lung cancer (SCLC) remains a lethal malignancy. Although immunochemotherapy regimens have improved patient survival rates, drug resistance still occurs in a significant subset of patients, highlighting the importance of elucidating the mechanisms within the tumor microenvironment. Here, we applied spatial single-cell transcriptomics to investigate the spatial characteristics of SCLC and their associations with immunochemotherapy resistance. By analyzing samples from 18 patients with extensive-stage SCLC, we identified two distinct epithelial cell subtypes: Epi-I and Epi-II. Epi-I exhibited high proliferative activity and was associated with treatment resistance and poor survival outcomes. In contrast, Epi-II showed more spatial contact with immune cells and was associated with treatment sensitivity. Further analysis uncovered a fascinating cellular transition paradigm, wherein Epi-I may be derived from Epi-II, with myeloid cells playing a facilitatory role in this transformation cascade. Specifically, within the spatial zone that was enriched with the Epi-II, epithelial cells may secrete MIF gene, which promoted the polarization of myeloid cells towards the M2 macrophages. The M2-polarized myeloid cells subsequently upregulated the expression of SPP1 that in turn triggered the activation of the PI3K-AKT signaling pathway in the adjacent epithelial cells, driving the conversion of Epi-II to Epi-I cells. Our findings revealed that the intricate crosstalk between epithelial and myeloid cells constitutes a pivotal resistance mechanism in SCLC, and targeting the SPP1/MIF pathway emerged as a promising strategy with the potential to enhance the treatment efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287412PMC
http://dx.doi.org/10.1038/s41698-025-01005-5DOI Listing

Publication Analysis

Top Keywords

myeloid cells
16
epithelial cells
12
cells
9
small cell
8
cell lung
8
lung cancer
8
epi-ii epi-i
8
associated treatment
8
spatial
5
epithelial
5

Similar Publications

Background: Inflammation and hyperuricemia are closely associated with chronic kidney disease (CKD). The systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are emerging as novel biomarkers. While, the synergistic effects of these biomarkers with hyperuricemia on CKD remain unclear.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Remodeling the sarcoma microenvironment by simultaneous targeting of urokinase-type plasminogen activator receptors and epidermal growth factor receptors to promote antitumor activity.

J Pharmacol Exp Ther

August 2025

Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology

We evaluated the antitumor effects of remodeling the MC17 mouse sarcoma microenvironment (SME) by targeting urokinase-type plasminogen activator receptor (uPAR)- and epidermal growth factor receptor (EGFR)-expressing cells. Specifically, we used eBAT (a bispecific ligand-targeted toxin directed to EGFR and uPAR), and its mouse counterpart, meBAT, to ablate uPAR- and/or EGFR-expressing cells. We chose the MC17 model because the cells are resistant to eBAT, allowing us to exclusively evaluate the role of uPAR- and EGFR-expressing cells in the SME.

View Article and Find Full Text PDF

Background: Inflammation impacts the prognosis of numerous types of tumors. Inflammatory indicators such as the neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and neutrophil-to-eosinophil ratio (NER) have emerged as potential prognostic markers and are closely correlated with the outcomes of cancer patients. However, the connection between NER and cancer prognosis remains incompletely understood.

View Article and Find Full Text PDF

Background: Benzene, a ubiquitous industrial chemical, is a well-established environmental toxin associated with hematological disorders such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), which are characterized by impaired hematopoiesis and bone marrow failure. This study investigates the role of ferroptosis, an iron-dependent form of cell death, in benzene-induced hematotoxicity, focusing on the repression of glutathione peroxidase 4 (GPX4), a critical regulator of ferroptosis.

Materials And Methods: Male C57BL/6 mice were exposed to benzene at various doses over six weeks.

View Article and Find Full Text PDF