Small Genome Size Ensures Adaptive Flexibility for an Alpine Ginger.

Genome Biol Evol

State Key Laboratory of Vegetation Structure, Function and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, School of Ecology and Environmental Science, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of B

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the proximate and ultimate causes of genome size variation has been the focus of considerable research. However, the extent and cause of intraspecific variation in genome size are debated and poorly understood. This study aimed to test the role of genome size in adaptation through variations in intraspecific genome size. Genome size was measured in 53 Roscoea tibetica populations from the Hengduan Mountains using flow cytometry. Stomatal size and density data were collected from wild and common garden populations. Associations among genome size, environmental factors, and stomatal traits were explored. We found that high genome size variability was positively correlated with most environmental factors but negatively correlated with solar radiation during the growing season. The environment, rather than geography, significantly influenced variations in genome size. Stomatal traits measured in the wild were significantly correlated with genome size, but no such correlations were detected in the common garden. Populations in the common garden had larger stomatal sizes and lower stomatal densities. Populations with smaller genome size presented a larger degree of stomatal trait variation from the wild to the common garden. Our findings suggest that intraspecific genome size has undergone adaptive evolution driven by environmental stress. A smaller genome size is more advantageous for the alpine ginger to adapt to and thrive in changing alpine habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342737PMC
http://dx.doi.org/10.1093/gbe/evaf151DOI Listing

Publication Analysis

Top Keywords

genome size
52
common garden
16
size
14
genome
12
alpine ginger
8
intraspecific genome
8
wild common
8
garden populations
8
environmental factors
8
stomatal traits
8

Similar Publications

In the past decades, several authors have investigated the possibility that genome size is correlated with metabolic rates, obtaining conflicting results. The main biological explanation among the supporters of this correlation was related to the nucleotypic effect of the genome size, which, determining the cellular volume and hence the surface area-to-volume ratio, influences cellular metabolism. In the present study, I tested a different hypothesis: genome size, influencing red blood cell (RBC) volume, is correlated with capillary density and diameter.

View Article and Find Full Text PDF

Background And Objective: Parental chromosomal structural variations (SVs) represent a primary genetic factor contributing to recurrent spontaneous abortion (RSA). Individuals carrying SVs with complex chromosomal rearrangements (CCRs) typically exhibit a normal phenotype but are at an increased risk of miscarriage. Current standard clinical detection methods are insufficient for the identification and interpretation of all SV types, particularly complex and occult SVs, thereby presenting a significant challenge for clinical genetic counseling.

View Article and Find Full Text PDF

The Essence of Nature Can be the Simplest (6)-Lifespan: Determined by Extracellular Fenton Chemistry.

Chem Biodivers

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm

Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.

View Article and Find Full Text PDF

Genomic and morphological characterization of a novel iridovirus, bivalve iridovirus 1 (BiIV1), infecting the common cockle ().

Microb Genom

September 2025

International Centre of Excellence for Aquatic Animal Health, The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.

High rates of mortality of the common cockle, , have occurred in the Wash Estuary, UK, since 2008. A previous study linked the mortalities to a novel genotype of , with a strong correlation between cockle moribundity and the presence of . Here, we characterize a novel iridovirus, identified by chance during metagenomic sequencing of a gradient purification of cells, with the presence also correlated to cockle moribundity.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF