Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We study how entanglement in photoionization is transferred from an electron-ion pair to an electron-photon pair by fluorescence. Time-resolved von Neumann entropies are used to establish how information is shared between the particles. Multipartite entanglement, between electron, ion and photon, is found on intermediate timescales. Finally, it is shown how a phase-locked two-pulse sequence allows for the application of time symmetry, mediated by strong coupling, to reveal the entanglement transfer process by measuring the photon number and electron kinetic energy in coincidence.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6633/adf354DOI Listing

Publication Analysis

Top Keywords

entanglement transfer
8
entanglement
4
transfer composite
4
composite electron-ion-photon
4
electron-ion-photon system
4
system study
4
study entanglement
4
entanglement photoionization
4
photoionization transferred
4
transferred electron-ion
4

Similar Publications

This paper presents a strategy for noise suppression and stability enhancement of organic photodetectors (OPDs) by introducing pH-neutralized and transfer-laminated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-transporting layer (HTL). Although PEDOT:PSS is widely used as an HTL material, its intrinsic acidity and structural instability hinder the performance of the OPD. Here, imidazole-induced neutralization promotes a linear entangled structure, while transfer lamination enables controlled PSS domain distribution.

View Article and Find Full Text PDF

The lithium‑oxygen battery (LOB) has emerged as an appropriate candidate for next-generation power supply system, owing to the ultrahigh theoretical energy density (3480 Wh kg) and relatively low cost. However, some intrinsic challenges, including high redox overpotentials, limited rate capability, and poor cyclic life, continue to hinder the practical deployment of lithium‑ oxygen batteries. The fundamental limitations originate from sluggish oxygen reduction/evolution reaction (ORR/OER) kinetics and parasitic side reactions, which can be effectively mitigated by employing efficient cathode electrocatalysts.

View Article and Find Full Text PDF

Stereoselective Self-Assembly of a Topologically Chiral [6]Catenane with 18 Crossings.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China.

Mechanically interlocked molecules (MIMs) exhibit unique properties and functions arising from their structural entanglement, features of which are absent in their individual components. However, synthesizing topologically complex architectures, particularly those with topological chirality, remains a significant challenge due to the lack of general methods for controlled entanglement. Herein, we report the stereoselective synthesis of a 24-metal-center topologically chiral [6]catenane featuring 18 crossings ( link), representing one of the most intricate MIMs constructed to date.

View Article and Find Full Text PDF

The processes generating quantum entanglement in DNA.

Biosystems

October 2025

Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980, Russia. Electronic address:

The migration processes of a positive quasi-particle generating quantum entanglement in DNA are investigated. The study was performed on the short DNA strands. It has been shown that the entanglement migrates along the nitrogenous bases chain as a result of the tunnel effect.

View Article and Find Full Text PDF

Two-dimensional materials provide a rich platform to explore phenomena such as emerging electronic and excitonic states, strong light-matter coupling, and new optoelectronic device concepts. The optical response of monolayers is entangled with the substrate on which they are grown or deposited on, often a two-dimensional material itself. Understanding how the properties of the two-dimensional monolayers can be tuned via the substrate is therefore essential.

View Article and Find Full Text PDF