Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leukemias with NUP98 rearrangements exhibit heterogeneous phenotypes such as acute myeloid leukemia (AML), T-acute lymphoblastic leukemia (T-ALL), or myelodysplastic syndrome/neoplasms (MDS) associated with fusion partners, whereas the mechanism responsible for this heterogeneity is poorly understood. Through genome-wide mutational and transcriptional analyses of 177 NUP98-rearranged leukemias, we show that cooperating alterations are associated with differentiation status even among leukemias sharing the same NUP98 fusions, such as NUP98::KDM5A acute megakaryocytic leukemia (AMKL) with RB1 loss or T-ALL with NOTCH1 mutations. CUT&RUN profiling of in vitro cord blood CD34+ cell (cbCD34) models of major NUP98 fusions revealed that NUP98 fusion oncoproteins directly regulate differentiation-related genes contributing to the disease phenotypes, represented by NUP98::KDM5A binding to MEIS2 or GFI1B for megakaryocyte differentiation. In patient samples, NUP98-fusion oncoprotein binding patterns are heterogeneous, potentially shaped by somatic mutations and differentiation status. Using cbCD34 models and CRISPR/Cas9 gene editing, we show that RB1 loss cooperates with NUP98::KDM5A by blocking terminal differentiation toward platelets and expanding megakaryocyte-like cells, whereas WT1 frameshift mutations skew differentiation toward dormant lymphoid-myeloid primed progenitor cells and cycling granulocyte-monocyte progenitor cells, providing evidence for NUP98-rearranged leukemia phenotypes affected by cooperating alterations. NUP98::KDM5A cbCD34 models with RB1 or WT1 alterations have different sensitivities to menin inhibition, suggesting that cellular differentiation provides stage-specific menin dependencies and resistance mechanisms that can be leveraged for future treatment strategies for NUP98-rearranged leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2025028993DOI Listing

Publication Analysis

Top Keywords

nup98-rearranged leukemia
12
cbcd34 models
12
fusion oncoproteins
8
disease phenotypes
8
cooperating alterations
8
differentiation status
8
nup98 fusions
8
rb1 loss
8
progenitor cells
8
leukemia
6

Similar Publications

White blood cell count as a powerful prognostic marker and treatment guide in paediatric acute myeloid leukaemia with NUP98 rearrangement.

Br J Haematol

August 2025

Precision Oncology and Intelligent Theranostics Laboratory, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Chil

NUP98-rearranged paediatric acute myeloid leukaemia (NUP98-r pAML) has an extremely poor prognosis, and the impact of clinical parameters and therapeutic schemes on its outcomes remains unclear. We conducted a retrospective study of the largest pAML cohort (1779 patients) and found that NUP98-r pAML has the worst prognosis among all subtypes. Furthermore, we identified white blood cell (WBC) count as the sole predictor of overall survival (OS) in NUP98-r pAML patients and validated its adverse prognostic impact in both external paediatric and adult cohorts.

View Article and Find Full Text PDF

Leukemias with NUP98 rearrangements exhibit heterogeneous phenotypes such as acute myeloid leukemia (AML), T-acute lymphoblastic leukemia (T-ALL), or myelodysplastic syndrome/neoplasms (MDS) associated with fusion partners, whereas the mechanism responsible for this heterogeneity is poorly understood. Through genome-wide mutational and transcriptional analyses of 177 NUP98-rearranged leukemias, we show that cooperating alterations are associated with differentiation status even among leukemias sharing the same NUP98 fusions, such as NUP98::KDM5A acute megakaryocytic leukemia (AMKL) with RB1 loss or T-ALL with NOTCH1 mutations. CUT&RUN profiling of in vitro cord blood CD34+ cell (cbCD34) models of major NUP98 fusions revealed that NUP98 fusion oncoproteins directly regulate differentiation-related genes contributing to the disease phenotypes, represented by NUP98::KDM5A binding to MEIS2 or GFI1B for megakaryocyte differentiation.

View Article and Find Full Text PDF

Advances in menin inhibition in acute myeloid leukemia.

Trends Cancer

July 2025

Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Menin has emerged as a promising therapeutic target in acute myeloid leukemia (AML). The menin-MLL1 interaction promotes an oncogenic transcriptional program that drives leukemogenesis in HOX-mediated acute leukemias, including KMT2A-rearranged (KMT2Ar), nucleophosmin 1-mutated (NPM1m), and NUP98-rearranged (NUP98r) AML, prompting development of menin inhibitors for treatment of these subtypes. Successes in clinical investigation have led to recent FDA approval of revumenib for KMT2Ar AML, with numerous trials examining menin inhibitors as monotherapy and in combination with other antileukemic drugs ongoing.

View Article and Find Full Text PDF

NUP98 fusion oncoproteins (FOs) are a hallmark of childhood acute myeloid leukemia (AML). NUP98 FOs drive leukemogenesis through phase-separated condensate formation and maintenance of an active chromatin landscape at stem cell-associated genes in cooperation with epigenetic regulators. Here we show that MYST family histone acetyltransferase (HAT) complex proteins including KAT6A/MOZ, KAT7/HBO1, and the common KAT6A/7 complex subunit BRPF1 associate with NUP98 FOs on chromatin and within condensates.

View Article and Find Full Text PDF

Cancer stem cells are essential for initiation and therapy resistance of many cancers, including acute myeloid leukemias (AML). Here, we apply functional genomic profiling to diverse human leukemias, including high-risk MLL- and NUP98-rearranged specimens, using label tracing in vivo. Human leukemia propagation is mediated by a rare quiescent label-retaining cell (LRC) population undetectable by current immunophenotypic markers.

View Article and Find Full Text PDF