Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Since the advent of recombinant DNA technologies and leading up to the clinical approval of T cell engager blinatumomab, the modular design of therapeutic antibodies has enabled the fusion of antibody fragments with proteins of various functionalities. This has resulted in an expansive array of possible mechanisms of action and has given birth to fragment-based antibodies (fbAbs) with immune cell engager modalities. In searchable databases, the preclinical development of these antibodies has shown promise; however, clinical outcomes and restructuring efforts involving these agents have produced mixed results and uncertainties. Amid budgetary cuts in both academia and industry, critical planning and evaluation of drug R&D would be more essential than ever before. While many reviews have provided outstanding summaries of preclinical phase fbAbs and cataloged relevant clinical trials, to date, very few of the articles in searchable databases have comprehensively reviewed the details of clinical outcomes along with the underlying reasons or potential explanations for the success and failures of these fbAb drug products. To fill the gap, in this review, we seek to provide the readers with clinically driven insights, accompanied by translational and mechanistic studies, on the current landscape of fragment-based immune cell engager antibodies in treating cancer, infectious, and autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286136PMC
http://dx.doi.org/10.3390/antib14030052DOI Listing

Publication Analysis

Top Keywords

cell engager
16
immune cell
12
fragment-based immune
8
engager antibodies
8
cancer infectious
8
infectious autoimmune
8
autoimmune diseases
8
searchable databases
8
clinical outcomes
8
antibodies
5

Similar Publications

Enhance therapeutic efficacy of BiTE (HER2/CD3) for HER2- positive tumors through expression.

Int J Pharm X

December 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Bispecific T-cell engagers (BiTEs) are small-molecule antibodies that exhibits potent tumoricidal activity but suffer from a short plasma half-life. Mesenchymal stromal cells (MSCs) represent promising delivery vehicles for sustained therapeutic protein expression. In this study, we used human umbilical cord blood-MSCs (hUC-MSCs) as a delivery system to to secrete HER2/CD3 BiTE antibodies, thereby addressing the pharmacokinetic limitations of conventional BiTE therapies.

View Article and Find Full Text PDF

How I treat Ph+ acute lymphoblastic leukemia.

Future Oncol

September 2025

Division of Leukemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by the fusion gene which produces a constitutively active tyrosine kinase which drives disease pathogenesis and is associated with resistance to conventional chemotherapy. Intensive cytotoxic chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT), the historical treatment paradigm for Ph+ ALL, was associated with poor outcomes. The introduction of inhibitors of ABL1 revolutionized the treatment of Ph+ ALL.

View Article and Find Full Text PDF

Blinatumomab is a bispecific T-cell engager that has recently transformed front-line treatment for many patients with Philadelphia chromosome (Ph)-negative B-cell acute lymphoblastic leukemia (B-ALL). It was originally studied in relapsed/refractory disease, then moved to targeting measurable residual disease (MRD), and has since been shown to improve outcomes for almost every age group when added to consolidation chemotherapy. The evidence supporting blinatumomab is most robust in adult and standard-risk pediatric age groups, but its benefit in adolescents and young adults and high-risk pediatric patients is not yet understood.

View Article and Find Full Text PDF

Bispecific T-cell engager therapy for multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

With upfront use of triplet- and quadruplet-based regimens coupled with autologous stem cell transplant (ASCT) and maintenance lenalidomide, a high proportion of multiple myeloma (MM) patients are achieving deep and durable responses. Yet, myeloma invariably relapses, with refractoriness to one or more drugs at first relapse. This therapeutic gap has been partially filled by T-cell engager (TCE) therapies that have demonstrated remarkable response rates and prolonged remissions in heavily pretreated patients with MM, providing off-the-shelf immunotherapy options leading to the U.

View Article and Find Full Text PDF

Introduction: Tarlatamab is a bispecific T-cell engager (BiTE) immunotherapy that binds delta-like ligand 3 on the surface of small cell lung cancer (SCLC) cells and CD3 on T cells, facilitating T cell-mediated cancer cell lysis. In the primary analysis of the phase 2 DeLLphi-301 study (NCT05060016), tarlatamab showed a favourable benefit-to-risk profile with durable objective responses and promising survival outcomes in patients with previously treated SCLC. Here, phase 2 data for the Asia region subgroup are presented.

View Article and Find Full Text PDF