98%
921
2 minutes
20
Diabetic nephropathy (DN) is a significant microvascular complication of diabetes, substantially contributing to the global prevalence of end-stage renal disease. The pathogenesis of DN is multifactorial, involving both immune-inflammatory responses and metabolic dysregulation. Hyperglycemia, a hallmark of diabetes, initiates kidney damage through various mechanisms, including oxidative stress, the accumulation of advanced glycation end products (AGEs), and changes in renal blood flow. These processes lead to the hallmark pathological features of DN, such as glomerulosclerosis and tubulointerstitial fibrosis. The immune system, particularly macrophages, T cells, and B cells, plays a crucial role in the progression of kidney injury, with inflammatory cytokines such as TNF-α and IL-6 promoting renal inflammation and fibrosis. In addition, metabolic disturbances, notably insulin resistance and dysfunction in insulin signaling, contribute to kidney dysfunction through several key signaling pathways, including PI3K/Akt, mTOR, Wnt/β-catenin, JAK/STAT, and NF-κB. The interplay between immune responses and metabolic signaling exacerbates kidney damage, creating a feedback loop that accelerates the progression of DN. While current therapeutic strategies mainly focus on managing blood glucose levels and inflammation, emerging treatments, such as GLP-1 receptor agonists and SGLT2 inhibitors, show promise in addressing both the metabolic and inflammatory aspects of the disease. Future research should focus on unraveling the complex interactions between immune and metabolic pathways to develop more targeted and personalized treatments for DN. This review highlights the significance of these mechanisms in the pathophysiology of DN and calls for innovative therapeutic approaches to combat this debilitating condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279506 | PMC |
http://dx.doi.org/10.3389/fendo.2025.1602594 | DOI Listing |
Clin Kidney J
September 2025
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.
View Article and Find Full Text PDFFront Pharmacol
August 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.
Diabetes mellitus is a metabolic disease with a high global prevalence, which affects blood vessels throughout the entire body. As the disease progresses, it often leads to complications, including diabetic retinopathy and nephropathy. Currently, in addition to traditional cellular and animal models, more and more organoid models have been used in the study of diabetes and have broad application prospects in the field of pharmacological research.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center of Shenyang Medical College, Shenyang, China.
MR409, a synthetic growth hormone-releasing hormone (GHRH) analogue, has demonstrated therapeutic potential in enhancing islet cell transplantation efficacy in diabetes mice and exerts beneficial effects on cardiovascular diseases. The present study investigated the renoprotective effects of MR409 on db/db and streptozotocin (STZ)-induced diabetic mice, focusing on its role in modulating oxidative stress and ferroptosis. db/db or STZ mice combined with high fat diet were used to establish the type 2 diabetic models.
View Article and Find Full Text PDFPhytochemistry
September 2025
State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Educa
Alstoniaschines A‒I (1‒9), nine previously alkaloids sharing five different skeletons were obtained from the leaves of Alstonia scholaris. The structures and absolute configurations were established by their extensive spectroscopic data analyses, including NMR, HRESIMS, X-ray crystallography data, and theoretical ECD calculations. Compounds 1, 2, 3, and 9 exerted significant protective effect against oxidative stress and inflammatory damage of podocytes induced by high glucose, manifesting as the increase of superoxide dismutase, catalase, glutathione peroxidase, alongside the reductions of malondialdehyde, nitric oxide, lactate dehydrogenase.
View Article and Find Full Text PDFClin Chim Acta
September 2025
Department of Physiology, University of Louisville, Louisville 40202 KY, USA. Electronic address:
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with podocyte injury representing an early pathogenic event. Conventional biomarkers such as albuminuria and eGFR identify renal damage only at advanced stages, limiting opportunities for timely intervention. Wilms' Tumor 1 (WT1), a podocyte-specific transcription factor, has emerged as a sensitive marker of early glomerular stress.
View Article and Find Full Text PDF