Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neutrophils, the most abundant leukocytes in human blood, play a critical role in the initial response to acute infection and injury. Activated neutrophils exert three primary effector functions: phagocytosis, degranulation of proteolytic enzymes into pericellular spaces, and generation of neutrophil extracellular traps (NETs). However, dysregulated neutrophil function can lead to tissue damage and inflammation, resulting in organ dysfunction that ultimately contributes to the progression of various diseases. Given the implication of neutrophils in the pathogenesis of diseases arising from chronic inflammation, exploring emerging therapies targeting these cells is critical for developing more effective treatment options. This review highlights nanotechnology-based therapeutic strategies aimed at modulating neutrophil activity and NET formation, with a focus on nanoparticles (NPs) and hydrogels. NPs-based delivery systems can regulate excessive neutrophil activity through targeted delivery of anti-inflammatory drugs, alteration of gene expression, induction of cell death, or inhibition of neutrophil recruitment. Additionally, various nanotechnology-based therapeutics can inhibit NET formation or degrade NETs following neutrophil activation. NPs can also be internalized by neutrophils and utilized as carriers, facilitating localized therapeutic delivery as neutrophils are recruited to inflammatory sites. The importance of targeting or harnessing neutrophils are explained and we discuss therapeutic strategies to control their activity, which may aid in designing future treatments for neutrophil-mediated inflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343143PMC
http://dx.doi.org/10.1002/adhm.202502092DOI Listing

Publication Analysis

Top Keywords

inflammatory diseases
8
therapeutic strategies
8
neutrophil activity
8
net formation
8
neutrophils
7
neutrophil
6
advanced nanoparticle
4
nanoparticle therapeutics
4
therapeutics targeting
4
targeting neutrophils
4

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

January 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

Background: Calcium pyrophosphate dihydrate (CPPD) deposition disease at the craniocervical junction (CCJ) typically presents with a retro-odontoid pseudotumor. Here, the authors report a case of CPPD-induced basilar impression, causing vertebral artery (VA) dissection and hemorrhage.

Observations: A 65-year-old male presented with worsening chronic cervicalgia, occipital headaches, and unstable tandem gait.

View Article and Find Full Text PDF

Genetic causality of circulating inflammatory proteins and plasma metabolites in coronary atherosclerosis.

Postgrad Med J

September 2025

Department of Basic Medicine, Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou, Guangdong, 515041, China.

Background: Coronary atherosclerosis is a leading cause of cardiovascular disease and death worldwide. Despite progress in understanding its pathogenesis, the roles of circulating inflammatory proteins and plasma metabolites are complex and not fully elucidated. Existing Mendelian randomization (MR) studies often target isolated biomarkers, lacking comprehensive and mechanistic insights.

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).

View Article and Find Full Text PDF