Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accurate temperature forecasting relies on traditional meteorological parameters that are essential for monitoring weather informatics and guiding forecasting efforts. This study introduces a deep learning architecture for high-precision climate temperature forecasting via an improved Kolmogorov-Arnold Networks, named Tem-KAN. Grounded in the Kolmogorov-Arnold representation theorem, Tem-KAN explores replacing conventional linear weights in neural networks with spline-parameterized univariate functions, enabling dynamic learning of nonlinear climate patterns while maintaining intrinsic interpretability. The proposed framework uniquely integrates the universal approximation capabilities of Multi-Layer Perceptrons (MLPs) with physically meaningful feature visualization through its adaptive activation functions, addressing critical limitations of black-box climate models. A temperature prediction pipeline is established that first preprocesses raw meteorological data from UK monitoring stations, then trains Tem-KAN to map historical trends to multi-horizon forecasts. Rigorous evaluations on real-world climate datasets demonstrate Tem-KAN's dual advantage achieving state-of-the-art prediction accuracy while utilizing fewer trainable parameters. In addition, a systematic ablation study quantifies the sensitivity of key Tem-KAN-specific hyperparameters (spline order k, grid resolution grid) on forecasting performance. Finally, we theoretically prove Tem-KAN's universal approximation capacity through function space analysis, and practically, we demonstrate its interpretability and prediction performance. These innovations position Tem-KAN as a paradigm-shifting tool for climate informatics, offering meteorologists both high predictive performance and mechanistic insight into temperature dynamics. The framework's reduced hyperparameter complexity further enhances its viability for operational forecasting systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2025.07.014 | DOI Listing |