98%
921
2 minutes
20
This article aims to address the fixed-time optimal leader-following consensus issue for unknown multiagent systems (MASs) under Denial of Service (DoS) and false data injection (FDI) attacks. A novel fixed-time stability theorem under DoS attacks is presented to simplify the stability conditions and decrease the computational complexity of the settling time. Simultaneously, the deep neural networks (DNNs) structure with the projection operator are adopted in real-time to approximate the unknown system dynamics. To achieve the optimal consensus under cyber-attacks, a hierarchical control approach is presented, which includes a reference signal generation layer and a tracking control layer. Specifically, the distributed and Luenberger-based observers are designed in the reference signal generation layer to solve the fixed-time state estimation issues of leader and followers under multiple malicious attacks, respectively. Then, the optimal control strategy based on the event-triggered mechanism (ETM) is designed in the tracking control layer to track the reference signal and minimize the cost consumption. Due to the difficulty in obtaining explicit expressions of the optimal control mechanisms, a critic-only reinforcement learning (RL)-based algorithm is presented for online learning the unknown weight within a fixed time. By rigorous proof, the developed observers can achieve the fixed-time state reconstruction and the optimal control policy can track observation states after a fixed time. Finally, simulation results about platooning control of automated vehicles are given to demonstrate the efficacy of the developed technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2025.3583368 | DOI Listing |
EMBO J
September 2025
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.
A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPR) and the integrated stress response (ISR).
View Article and Find Full Text PDFAm J Transplant
September 2025
Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Massachusetts General Hospital, Harvard Medical School; Department of Surgery, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania
Achieving immune tolerance is a key goal in organ transplantation, as it eliminates the need for long-term immunosuppression. Regulatory B cells (Bregs) present a promising strategy for inducing tolerance. Our previous findings demonstrate that the adoptive transfer of ex vivo-expanded murine splenic B regulatory cells, referred to as TLR-Bregs (TLR9/TLR4 stimulation), induces tolerance to allografts.
View Article and Find Full Text PDFVet Microbiol
September 2025
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology for Ministry of Education of the People's Republic of China, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Key Laboratory of Animal Disease and Human Health
Duck plague is a highly contagious disease caused by duck plague virus (DPV) infection, leading to high morbidity (up to 100 %) and mortality rates (up to 95 %) among ducks. Mitochondria are essential organelles for virus replication. It is crucial to deepen the understanding of mitochondrial homeostasis and the interaction between mitochondrial proteins after viral infection.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
In essence, reinforcement learning (RL) solves optimal control problem (OCP) by employing a neural network (NN) to fit the optimal policy from state to action. The accuracy of policy approximation is often very low in complex control tasks, leading to unsatisfactory control performance compared with online optimal controllers. A primary reason is that the landscape of value function is always not only rugged in most areas but also flat on the bottom, which damages the convergence to the minimum point.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDF