98%
921
2 minutes
20
SP7, also known as Osterix, is a zinc finger-containing transcription factor, plays a crucial role in osteoblast differentiation and bone formation. This review examines the molecular mechanisms underlying SP7's regulatory functions, highlighting its interactions with key signaling pathways such as BMP-SMAD, Wnt/β-catenin, and HIF-1α. SP7 acts downstream of RUNX2 to regulate osteogenic gene expression, including collagen Type I Alpha 1 (COL1A1), alkaline phosphatase (ALP) and osteocalcin (OCN). The review also explores the role of post-translational modifications, such as phosphorylation and ubiquitination, in modulating SP7's stability and activity. Emerging therapeutic strategies targeting SP7, including gene editing, RNA-based approaches, and small-molecule modulators, are discussed as innovative solutions for treating osteoporosis and other skeletal disorders. The potential for future research into SP7's interactions with non-coding RNAs and angiogenesis pathways is emphasized, underscoring its significance in skeletal health and regenerative medicine. This comprehensive overview consolidates current knowledge of SP7's molecular functions, therapeutic potential, and its pivotal role in bone biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12266214 | PMC |
http://dx.doi.org/10.1016/j.afos.2025.04.003 | DOI Listing |
FEMS Microbiol Rev
September 2025
CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
African Swine Fever (ASF), caused by the highly contagious African swine fever virus (ASFV), poses a significant threat to domestic and wild pigs worldwide. Despite its limited host range and lack of zoonotic potential, ASF has severe socio-economic and environmental consequences. Current control strategies primarily rely on early detection and culling of infected animals, but these measures are insufficient given the rapid spread of the disease.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.
Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.
Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.
View Article and Find Full Text PDFJ Oncol Pharm Pract
September 2025
Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.
Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.
View Article and Find Full Text PDFNutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDF