98%
921
2 minutes
20
Dysregulation of the TAR DNA-binding protein 43 (TDP-43), including intraneuronal cytoplasmic mislocalisation and aggregation is a feature of multiple neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD), limbic-predominant age-related TDP-43 encephalopathy (LATE) and alzheimers disease (AD). Unravelling the causes and functional consequences of TDP-43 dysregulation is paramount to understanding disease mechanisms as well as identifying effective therapeutic targets. Here we present a comprehensive characterisation of three stable transgenic zebrafish models that express human TDP-43 variants in motor neurons. We demonstrate that overexpression of predominantly nuclear wildtype TDP-43, cytoplasm-targeted TDP-43, and an ALS-linked variant (G294V) each induce toxic gain-of-function effects, leading to impaired motor function, motor neuron loss, and muscle atrophy. Importantly, these models reveal distinct phenotypes, with the ALS-linked mutant exhibiting axonal transport deficits and neuromuscular junction disruption, while cytoplasmic mislocalised TDP-43 heightened susceptibility to oxidative stress. Two FDA-approved drugs used to treat ALS, edaravone and riluzole, were examined in these models and revealed that edaravone, but not riluzole, was effective in rescuing motor deficits associated with cytoplasmic TDP-43 expression and, to a lesser extent, mutant TDP-43 . Collectively, these findings reveal distinct pathological consequences of TDP-43 dysregulation, providing neuron-centric mechanistic insights, and establish the humanised TDP-43 zebrafish as an efficient system for preclinical therapeutic testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265542 | PMC |
http://dx.doi.org/10.1101/2025.07.06.663393 | DOI Listing |
Neuropathol Appl Neurobiol
October 2025
Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
JAMA Neurol
September 2025
Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.
View Article and Find Full Text PDFBrain
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege
Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.
View Article and Find Full Text PDFBiophys Chem
September 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
A comprehensive understanding of the molecular mechanism underlying the Liquid-Liquid Phase Separation (LLPS) pathway of LCD-TDP43 remains a challenge in the context of its neuropathogenesis. The primary driving force behind the TDP-43 LLPS is the interplay of hydrophobic interactions reinforced by aromatic residues. This study presents a novel, convenient, sensitive, and probe-free approach using excitation-emission matrix (EEM) fluorescence to monitor the microenvironment of aromatic residues and π-π stacking interactions during different stages of the LLPS pathway.
View Article and Find Full Text PDFCell Rep
September 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.
View Article and Find Full Text PDF