98%
921
2 minutes
20
In metastatic breast cancer, -activating mutations often co-occur with mutations, a combination linked to poor response to neratinib and worse prognosis. To model this clinical challenge, we bred transgenic mice with two mutant alleles: (the murine homolog of human R175H) and , which mimics p53 truncations common in human tumors. mutations accelerated tumor development and reduced survival in -mutant mice. These co-mutant tumors were resistant to neratinib but remained sensitive to exatecan, the topoisomerase I (TOP1) inhibitor payload in trastuzumab deruxtecan (T-DXd). Mechanistically, mutant tumors exhibited upregulation of histone acetylation, hypertranscription of DNA repair factors, increased chromatin accessibility, and rendered cells more susceptible to TOP1 inhibitors via G2/M arrest and apoptosis. This vulnerability is dependent on transcriptional activity of mutations, highlighting a novel strategy to treat co-mutant breast cancers using TOP1-targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265670 | PMC |
http://dx.doi.org/10.1101/2025.07.06.663368 | DOI Listing |
Cell Signal
September 2025
School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
Triple-negative breast cancer (TNBC) presents a formidable therapeutic challenge due to its aggressive behavior, molecular heterogeneity, and lack of actionable targets. This study identifies activation-induced cytidine deaminase (AID) as a pivotal epigenetic driver reprogramming the tumor microenvironment (TME) via non-canonical regulation of NOTCH signaling. Mechanistically, AID recruits histone acetyltransferase 1 (HAT1) to form a chromatin-remodeling complex that binds the JAG1 promoter region (-1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
King's College London, GKT School of Medical Education, London, UK. Electronic address:
Heart failure remains a major global health concern characterized by complex pathophysiological processes and significant clinical challenges. While the distinct roles of metabolic and epigenetic dysregulation in heart failure are increasingly recognized, their intricate interplay remains a critical, yet underexplored, aspect of its pathophysiology. This review provides a comprehensive examination of this metabolic-epigenetic crosstalk, exploring how metabolic changes, such as impaired fatty acid oxidation, increased glycolysis, and mitochondrial dysfunction, alter epigenetic landscapes through shifts in intermediary metabolites including acetyl-CoA, NAD+, and α-ketoglutarate.
View Article and Find Full Text PDFBiochem J
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India.
Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).
View Article and Find Full Text PDFJ Oral Pathol Med
September 2025
Department of Oral and Maxillofacial Pathology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
Background: Oral squamous cell carcinoma (OSCC) is one of the most frequent head and neck cancers. The 4-nitroquinoline 1-oxide (4NQO) mouse model of oral carcinogenesis is a well-established model to investigate the mechanism behind OSCC development, including epigenetic alterations. Studies have shown that histone acetylation is a key regulator of gene expression and may play a role in such a tumor.
View Article and Find Full Text PDFNanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDF