Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: In recent years, advancements in machine learning and electronic stethoscope technology have enabled high-precision recording and analysis of lung sounds, significantly enhancing pulmonary disease diagnosis.

Methods: This study presents a comprehensive approach to classify lung sounds into healthy and unhealthy categories using a dataset collected from 112 subjects, comprising 35 healthy individuals and 77 patients with various pulmonary conditions, such as asthma, heart failure, pneumonia, bronchitis, pleural effusion, lung fibrosis, and chronic obstructive pulmonary disease (COPD), grouped as unhealthy. The dataset was obtained using a 3M Littmann® Electronic Stethoscope Model 3,200, employing three types of filters (Bell, Diaphragm, and Extended) to capture sounds across different frequency ranges. We extracted five key audio features-Spectral Centroid, Power, Energy, Zero Crossing Rate, and Mel-Frequency Cepstral Coefficients (MFCCs)-from each recording to form a feature matrix. A Multi-Layer Perceptron (MLP) neural network was trained for binary classification.

Results: The MLP neural network achieved accuracies of 98%, 100%, and 94% on the training, validation, and testing sets, respectively. This partitioning ensured the model's robustness and accuracy.

Discussion: The high classification accuracy achieved by the MLP neural network suggests that this approach is a valuable decision-support tool for identifying healthy versus unhealthy lung sounds in clinical settings, facilitating early intervention while maintaining computational efficiency for offline implementation. The combination of detailed feature extraction and an optimized MLP neural network resulted in a reliable method for automated binary classification of lung sounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264637PMC
http://dx.doi.org/10.3389/fbioe.2025.1583416DOI Listing

Publication Analysis

Top Keywords

neural network
20
lung sounds
16
mlp neural
16
healthy versus
8
versus unhealthy
8
electronic stethoscope
8
pulmonary disease
8
neural
5
network
5
lung
5

Similar Publications

Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Hubs, influencers, and communities of executive functions: a task-based fMRI graph analysis.

Front Hum Neurosci

August 2025

Baptist Medical Center, Department of Behavioral Health, Jacksonville, FL, United States.

Introduction: This study investigates four subdomains of executive functioning-initiation, cognitive inhibition, mental shifting, and working memory-using task-based functional magnetic resonance imaging (fMRI) data and graph analysis.

Methods: We used healthy adults' functional magnetic resonance imaging (fMRI) data to construct brain connectomes and network graphs for each task and analyzed global and node-level graph metrics.

Results: The bilateral precuneus and right medial prefrontal cortex emerged as pivotal hubs and influencers, emphasizing their crucial regulatory role in all four subdomains of executive function.

View Article and Find Full Text PDF

Maximizing theoretical and practical storage capacity in single-layer feedforward neural networks.

Front Comput Neurosci

August 2025

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.

Artificial neural networks are limited in the number of patterns that they can store and accurately recall, with capacity constraints arising from factors such as network size, architectural structure, pattern sparsity, and pattern dissimilarity. Exceeding these limits leads to recall errors, eventually leading to catastrophic forgetting, which is a major challenge in continual learning. In this study, we characterize the theoretical maximum memory capacity of single-layer feedforward networks as a function of these parameters.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF