Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study demonstrates the efficacy of a symmetrically designed flow-electrode capacitive deionization (FCDI) system for the electrochemical defluorination of photovoltaic (PV) wastewater, with a systematic investigation conducted to optimize operational parameters and analyze key factors influencing system performance, offering valuable insights into enhancing FCDI efficiency. The results revealed that an optimal applied voltage of 1.2 V yielded a fluoride removal efficiency of 92.9% with an energy consumption of 6.49 kWh/mol. Increasing the electrode content to 0.75 wt% enhanced the removal efficiency to 98.3%; however, further increases in electrode content led to higher energy consumption due to elevated viscosity. Optimizing the flow rate to 45 mL/min resulted in a removal efficiency of 98.6%, accompanied by improved adsorption rates and reduced energy consumption. Adding 1 g/L of electrolyte substantially enhanced system performance, achieving a fluoride removal efficiency of 92.9%. In mixed-ion wastewater, competitive adsorption between and F⁻ was observed. Doubling the concentration relative to F⁻ decreased the F⁻ removal efficiency from 96.2% to 87.3%. Nonetheless, the FCDI system demonstrated robust fluoride removal performance under high ion concentrations and complex matrix conditions, offering an efficient and sustainable approach for industrial wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2025.2482979DOI Listing

Publication Analysis

Top Keywords

removal efficiency
20
fluoride removal
12
energy consumption
12
capacitive deionization
8
deionization fcdi
8
fcdi system
8
system performance
8
efficiency 929%
8
electrode content
8
removal
7

Similar Publications

Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.

View Article and Find Full Text PDF

Ultraviolet B (UVB) radiation (280-320 nm) has been recognized as a carcinogen since 1928, leading to sun exposure minimization. However, epidemiological studies suggest that sun exposure correlates with increased life expectancy and reduced incidence of cardiovascular diseases and certain cancers such as colon and endometrial cancer. UVB exposure also influences liver metabolism, protects against hepatocellular lipotoxicity, and affects metabolic health.

View Article and Find Full Text PDF

Multi-modal virtual reality system for tinnitus treatment methods and validation.

PLoS One

September 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea.

Virtual reality (VR) has been utilized in clinical treatment because it can efficiently simulate situations that are difficult to control in the real world. In this study, we evaluated the efficacy of VR in patients with chronic subjective tinnitus. We assessed the clinical effectiveness based on electroencephalogram (EEG) analysis and questionnaire responses after patients participated in a 6-8-week VR-based tinnitus relief program.

View Article and Find Full Text PDF

The protocol presented here enables the quantification of microplastics (MPs) as small as ~1 µm in diameter, accurate identification of polymer types, and estimation of particle volume, critically allowing for the calculation of MP mass. Representative results from samples collected in the Great South Bay (GSB), NY, showed that particles within the 1-6 µm equivalent spherical diameter (ESD) range were the most abundant, with approximately 75% of particles measuring less than 5 µm. Notably, the pre-sieving step failed to yield any particles larger than 60 µm, suggesting that large MPs were rare at the coastal sites sampled.

View Article and Find Full Text PDF

In the context of the rapid development of large language models (LLMs), contrastive learning has become widely adopted due to its ability to bypass costly data annotation by leveraging vast amounts of network data for model training. However, this widespread use raises significant concerns regarding data privacy protection. Unlearnable Examples (UEs), a technique that disrupts model learning by perturbing data, effectively prevents unauthorized models from misusing sensitive data.

View Article and Find Full Text PDF