Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Colorectal cancer is a prominent global malignancy that highlights the pressing need for reliable preclinical models to expedite therapeutic efficacy and drug discovery. Traditional models, such as cell lines and patient-derived xenografts, are constrained by their inability to fully replicate tumor heterogeneity and support scalable drug screening. While patient-derived organoids more accurately preserve tumor pathophysiology, their clinical translation is impeded by technical challenges related to standardization, reproducibility, and high-throughput compatibility. In this study, we developed a microfluidic-engineered platform that employed a laminin-enhanced decellularized small intestinal submucosa extracellular matrix (dSISML) to produce uniform organoid-laden microspheres (MP). This biohybrid system eliminated the need for tumor-derived matrices (e.g. Matrigel) and provided a physiologically relevant microenvironment. When integrated with microfluidics, the platform facilitated rapid and scalable production of size-tunable MP, thereby effectively addressing critical bottlenecks in organoid handling and drug testing workflows. Our study demonstrated that dSISML could sustain organoid growth and drug responsiveness comparable to Matrigel, while offering improved operational simplicity and reduced batch variability. Moreover, dSISML enabled simpler and controllable high-throughput microsphere preparation. This advanced methodology not only delivers precision equivalent to conventional cell culture techniques but also empowers large-scale pharmacological evaluation through its automated media processing system. By integrating biomimetic design with scalable fabrication, this strategy advances personalized oncology through robustmodels for high-throughput therapeutic screening and mechanistic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/adf099 | DOI Listing |