Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful technique for materials characterization, yet its application to air- and moisture-sensitive materials is often hindered by the difficulty in maintaining an inert environment during magic-angle spinning (MAS). This is particularly true for fast-MAS rotors that do not generally provide tight seals. Herein, we present a generalizable approach employing perdeuterated paraffin waxes-n-icosane-d42 and c-dodecane-d24-as protective embedding media to analyze sensitive organometallic catalysts using SSNMR. We demonstrate that these waxes significantly slow oxidative degradation under MAS conditions. Weak background H and C NMR signals from the waxes are effectively suppressed using double-quantum filtration and cross-polarization techniques. These findings offer a robust method for expanding the scope of SSNMR to air-sensitive systems, with implications for the structural study of reactive materials and catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2025.107935 | DOI Listing |