98%
921
2 minutes
20
Accurately modeling biomolecular interactions is a central challenge in modern biology. While recent advances, such as AlphaFold3 and Boltz-1, have substantially improved our ability to predict biomolecular complex structures, these models still fall short in predicting binding affinity, a critical property underlying molecular function and therapeutic efficacy. Here, we present Boltz-2, a new structural biology foundation model that exhibits strong performance for both structure and affinity prediction. Boltz-2 introduces controllability features including experimental method conditioning, distance constraints, and multi-chain template integration for structure prediction, and is, to our knowledge, the first AI model to approach the performance of free-energy perturbation (FEP) methods in estimating small molecule-protein binding affinity. Crucially, it achieves strong correlation with experimental readouts on many benchmarks, while being at least 1000× more computationally efficient than FEP. By coupling Boltz-2 with a generative model for small molecules, we demonstrate an effective workflow to find diverse, synthesizable, high-affinity binders, as estimated by absolute FEP simulations on the TYK2 target. To foster broad adoption and further innovation at the intersection of machine learning and biology, we are releasing Boltz-2 weights, inference, and training code under a permissive open license, providing a robust and extensible foundation for both academic and industrial research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262699 | PMC |
http://dx.doi.org/10.1101/2025.06.14.659707 | DOI Listing |
Acta Pharmacol Sin
September 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.
View Article and Find Full Text PDFUrol Oncol
September 2025
Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:
Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.
Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.
Nucleic Acids Res
September 2025
Department of Biological Sciences, Columbia University, New York, NY 10027, United States.
The 3'-end cleavage and polyadenylation of pre-mRNAs is dependent on a key hexanucleotide motif known as the polyadenylation signal (PAS). The PAS hexamer is recognized by the mammalian polyadenylation specificity factor (mPSF). AAUAAA is the most frequent PAS hexamer and together with AUUAAA, the second most frequent hexamer, account for ∼75% of the poly(A) signals.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:
The development of antiviral nanotherapeutics remains a formidable challenge due to the structural diversity and rapid evolution of viral surface glycoconjugates. Here, we report a rationally engineered multivalent Galectin-1 (Gal-1) nanoplatform based on 13-nm gold nanoparticles (AuNPs) for high-affinity glycan targeting and therapeutic inhibition of influenza virus. By leveraging site-specific conjugation and molecular orientation control, the AuNP/Gal-1 nanocomplex maximizes the exposure of carbohydrate recognition domains (CRDs) while preserving Gal-1's tertiary structure, as confirmed by molecular dynamics simulations and spectroscopic analyses.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China. Electronic address:
Ethnopharmacological Relevance: Curcuma wenyujin was first recorded in the Tang Dynasty's Xinxiu Bencao and has been traditionally used to treat blood stasis syndrome. Its active component curdione exhibits antiplatelet effects, though its anticoagulant mechanisms remain unclear and require further investigation.
Aim Of The Study: To investigate the anticoagulant activity of curdione, identify potential targets through integrated screening, and elucidate the underlying mechanisms.