The early human interferon gamma response to is driven by Vγ9Vδ2 T-cell sensing of host phosphoantigens and subsequent NK-cell activation.

bioRxiv

Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a globally prevalent intracellular parasite that infects ~40 million Americans. The murine immune response to relies on both toll-like receptor (TLR) 11/12 and immunity related GTPase-mediated (IRGs) responses, which humans lack, making it unclear how the human immune response detects and responds to the parasite. We investigated whether human Vγ9Vδ2 T cells, which detect phosphoantigens through the BTN3A1 receptor, shape the early immune response to the parasite. Using primary human peripheral blood mononuclear cells (PBMCs), we show that Vγ9Vδ2 T cells are activated by -infected cells in a BTN3A1-dependent manner leading to secretion of interferon gamma (IFNγ) and tumor necrosis factor-alpha (TNFα). Additionally, these T cells potentiate IFNγ production by natural killer (NK) cells, likely via TNFα and interleukin (IL)-12 produced during infection. Active parasite invasion is required to stimulate the IFNγ response, and inhibition of the host mevalonate pathway, which limits the synthesis of the phosphoantigen isopentenyl pyrophosphate (IPP), attenuates the cytokine response, indicating infection increases host phosphoantigens leading to Vγ9Vδ2 T cell activation. Our findings identify Vγ9Vδ2 T cells as key effectors that potentiate NK cells in the early human immune response to , bridging innate and adaptive immunity in the absence of TLR11/12 signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262692PMC
http://dx.doi.org/10.1101/2025.06.12.659293DOI Listing

Publication Analysis

Top Keywords

immune response
16
vγ9vδ2 cells
12
early human
8
interferon gamma
8
host phosphoantigens
8
human immune
8
cells
8
response
7
vγ9vδ2
5
human interferon
4

Similar Publications

Refractory cytomegalovirus (CMV) infection is a severe complication following umbilical cord blood transplantation (UCBT). Antiviral agents, the standard first-line therapy, are limited by toxicity and resistance without robust T-cell immunity. We evaluated third-party donor (TPD)-derived CMV-specific T cells (CMVSTs) as a treatment option.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Can Sex-based Variations in the Immune Responses to AAV Gene Therapy Affect Safety and Efficacy? A Review of Current Understanding.

AAPS J

September 2025

Gene Transfer and Immunogenicity Branch, Division of Gene Therapy 2, Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, WO52 RM3124, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA.

As the field of gene therapy advances and as the importance of sex as a biological variable in shaping viral immune responses is recognized, the impact of sex on adeno-associated virus (AAV) vectors mediated gene therapies remain largely unexplored. Here we review current understanding of the immune response against AAV gene therapy as well as the knowledge of sex differences observed in viral responses. We discuss sex differences in innate immune mechanisms such as Toll-like receptor recognition and complement activation, as well as the functional responses of key immune cells such as dendritic cells, macrophages, and T/B cells that are involved in AAV immunogenicity.

View Article and Find Full Text PDF

Patients with primary plasma cell leukemia (pPCL), particularly those with extramedullary disease (EMD), face a poor prognosis even with chimeric antigen receptor (CAR)-T cell therapy. This case report describes a patient with relapsed/refractory pPCL and life-threatening malignant pleural effusion (PE) treated with intrapleural CAR-T cells targeting B-cell maturation antigens. CAR-T cell expansion within the PE was observed, along with a rapid reduction in leukemia cell count and PE volume.

View Article and Find Full Text PDF

Background: Variants of uncertain significance (VUS) represent a major diagnostic challenge in the interpretation of genetic testing results, particularly in the context of inborn errors of immunity such as severe combined immunodeficiency (SCID). The inconsistency among computational prediction tools often necessitates expensive and time-consuming wet-lab analyses.

Objective: This study aimed to develop disease-specific, multi-class machine learning models using in silico scores to classify SCID-associated genetic variants and improve the interpretation of VUS.

View Article and Find Full Text PDF