Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted insertion of large DNA fragments has promising applications for genome engineering and gene therapy. Twin prime editing (PE) guide RNAs (pegRNAs) have enabled relatively large insertions, but the efficiency remains low for insertions greater than 400 base pairs. Here we describe a Prime Assembly (PA) approach for the insertion of large DNA donor fragments, whose ends are designed to overlap with the flaps generated by twinPE. We used PA to insert one, two, or three overlapping DNA fragments, with total insertion sizes ranging from 0.1 to 11 kilobase pairs. An inhibitor of non-homologous end joining (NHEJ) enhanced both the efficiency and precision of insertions. PA relies on DNA templates that are easily produced and does not require co-delivery of exogenous DNA-dependent DNA polymerases. Our study demonstrates that PA can initiate "Gibson-like" assembly in cells to generate gene insertions without double-stranded DNA breaks or recombinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262537PMC
http://dx.doi.org/10.1101/2025.06.16.659978DOI Listing

Publication Analysis

Top Keywords

prime assembly
8
insertion large
8
large dna
8
dna fragments
8
dna
7
insertions
5
assembly linear
4
linear dna
4
dna donors
4
donors enables
4

Similar Publications

Continuous Assay for the dNTP Triphosphohydrolase of Activated SAMHD1.

Anal Biochem

September 2025

Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461, United States. Electronic address:

Sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is the only member of the triphosphoric monoester hydrolase family in humans (dNTP + HO → dN + PPPi). The dNTPase activity of SAMHD1 inhibits DNA synthesis, resulting in cell-cycle arrest and restricting viral replication. The complex allosteric regulation mechanism of SAMHD1 and a reaction that lacks a direct spectroscopic signal make its kinetic analysis and inhibitor discovery challenging.

View Article and Find Full Text PDF

Loss of synaptic Munc13-1 underlies neurotransmission abnormalities in spinal muscular atrophy.

Cell Mol Life Sci

August 2025

Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease characterized by degeneration of spinal motoneurons, leading to muscle atrophy and synaptic loss. SMN functions in mRNA splicing, transport, and local translation are crucial for maintaining synaptic integrity. Within the presynaptic membrane, the active zone orchestrates the docking and priming of synaptic vesicles.

View Article and Find Full Text PDF

Vaccines that stimulate systemic and mucosal immunity to a level required to prevent SARS-CoV-2 infection and transmission are an unmet need. Highly protective hepatitis B and human papillomavirus nanoparticle vaccines highlight the potential of multivalent nanoparticle vaccine platforms to provide enhanced immunity. Here, we report the construction and characterization of self-assembling 60-subunit icosahedral nanoparticle SARS-CoV-2 vaccines using the bacterial enzyme lumazine synthase (LuS).

View Article and Find Full Text PDF

Membrane charge primes the necroptotic kinase RIPK3 for amyloid assembly.

Commun Chem

August 2025

Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (IQF-CSIC), Madrid, Spain.

Receptor-interacting protein kinase 3 (RIPK3) drives necroptosis by assembling into functional amyloid fibrils. Here we show that lipids modulate RIPK3 amyloidogenesis by stabilizing an aggregation-prone intermediate. While electrostatic repulsion maintains RIPK3 in a soluble state, charge compensation alone is not sufficient for fibril formation and hydrophobic contacts are required to initiate nucleation.

View Article and Find Full Text PDF

SARM1 activation promotes axonal degeneration via a two-step phase transition.

Nat Chem Biol

August 2025

Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.

SARM1 is a key executioner of axonal degeneration, acting through NAD⁺ depletion by NADase activity of its TIR domain. Although normally autoinhibited, SARM1 becomes activated in response to axonal damage; however, the underlying mechanism remains unclear. Here, using a class of pyridine-containing compounds that trigger SARM1-dependent axon degeneration, we uncover a two-step activation process.

View Article and Find Full Text PDF