A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Local Geometry, Structure and Electronic Resonances Enhancing the SFG Signal from CO on Ir Surfaces. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sum frequency generation (SFG) spectroscopy was used to study CO adsorption on smooth and rough Ir(111) single crystal surfaces, the cleanliness, composition, order and morphology of which were comprehensively characterized by Auger electron spectroscopy (AES), low energy ion scattering (LEIS), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). For CO adsorbed on Ir(111), the resonant SFG signal intensity associated with the internal C-O stretch mode was about eight times stronger on a rough termination than on a smooth surface. Herein, we thoroughly discuss the origin of this phenomenon and consider several possible contributing factors, including coverage and lateral interactions, molecular hyperpolarizability (IR dipole moment and Raman polarizability), adsorption geometry (tilt angle), Fermi resonances, adsorbate hot vibrational bands, and surface plasmons and electronic structure. It is concluded that the sputter-induced local roughness of the Ir surface (grains evidenced by STM) facilitates the light-induced excitation of localized surface plasmon resonances (LSPR), accounting for the observed signal enhancement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257592PMC
http://dx.doi.org/10.1021/acs.jpcc.5c02545DOI Listing

Publication Analysis

Top Keywords

sfg signal
8
low energy
8
local geometry
4
geometry structure
4
structure electronic
4
electronic resonances
4
resonances enhancing
4
enhancing sfg
4
signal surfaces
4
surfaces sum
4

Similar Publications