Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanomaterials are revolutionizing the development of novel therapies, with applications ranging from drug delivery and diagnostics to controlling specific biological processes. However, the specific interactions that govern nanomaterial behavior in biological systems remain difficult to elucidate due to the complex dynamic nature of the lipid bilayer environment. Here, a combination of atomic force microscopy and molecular dynamics simulations is used to discover the precise mechanisms by which various ligand-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers of pure fluid phospholipids (1,2-di(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (DOPC)). When the ligand capping agent is altered, differences in adsorption and bilayer disruption as a function of capping agent size and charge are observed. Weakly physiosorbed ligands enable the absorption of the AuNP into the bilayer's hydrophobic core, whereas more strongly adsorbed ligands inhibit the complete insertion of the AuNP. However, ligand-dependent headgroup interactions can lead to interfacial adhesion or inhibition of adsorption. These results reveal that the interaction of AuNPs with biological membranes varies depending on the specific capping agent. Notably, the mechanisms may involve cooperative (or synergistic) effects with membrane components, highlighting the importance of understanding these interactions at molecular resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257907PMC
http://dx.doi.org/10.1002/smsc.202500060DOI Listing

Publication Analysis

Top Keywords

capping agent
16
gold nanoparticle
4
nanoparticle adsorption
4
adsorption uptake
4
uptake directed
4
directed particle
4
capping
4
particle capping
4
agent
4
agent nanomaterials
4

Similar Publications

Iron nanoparticle synthesis using waste banana peels and Maxilon Blue 5G sono-degradation.

Int J Phytoremediation

September 2025

Department of Environmental Engineering, Faculty of Engineering and Architecture, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey.

The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Synthesis of Stable Aluminum Nanoparticles at Varying Reactant Concentrations and Their Surface-Enhanced Raman Scattering Activity.

Langmuir

September 2025

Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States.

Aluminum nanoparticles (Al NPs) were synthesized via catalyzed thermal reduction of an aluminum precursor in the presence of a capping ligand. A systematic study was conducted to examine the effect of dilution on nanoparticle synthesis by varying the volume of anhydrous toluene across four dilution factors while maintaining constant molar quantities of the aluminum precursor, catalyst, and ligand. This methodology is relevant for scale-up processes, where more dilute conditions can mitigate nanoparticle reactivity and enhance safety.

View Article and Find Full Text PDF

Traditional biophysical cytometry has been limited by its low-dimensional phenotyping characteristics, often relying on only one or a few cellular biophysical phenotypes as readouts. This has perpetuated the perception that biophysical cytometry lacks the power to determine cellular heterogeneity. Here, we introduce a multimodal biophysical cytometry platform, termed quantitative phase morpho-rheological (QP-MORE) cytometry, which simultaneously captures a collection of high-resolution biophysical and mechanical phenotypes of single cells at ultrahigh throughput (>10 000 cells per s).

View Article and Find Full Text PDF

Conventional TiO₂ nanoparticle syntheses rely on high temperatures, toxic reagents and multi-step routes that impede scalability and sustainability. Here, we deliver the first green synthesis of TiO₂ nanoparticles (TiO₂ NPs) using polysaccharide- (42 mg GE g) and phenolic-rich (78 mg GAE g) Pinus patula leaf extract. GC-MS and LC-MS fingerprinting identify terpenoids, flavonoids and phenolic glycosides acting as simultaneous reducing, capping and stabilizing agents.

View Article and Find Full Text PDF

Molecular characterization and green synthesis of iron oxide nanoparticles from Ureibacillus chungkukjangi for methylene blue degradation.

Antonie Van Leeuwenhoek

September 2025

Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.

Synthetic dyes, such as methylene blue (MB), are increasingly becoming sources of water pollution and require better treatment strategies. This study describes an eco-friendly method for methylene blue degradation using green synthesized iron oxide nanoparticles form Ureibacillus chungkukjangi. This bacterium was isolated from clinical samples and identified using 16S rRNA gene amplification and sequenced using Sanger sequencing technology.

View Article and Find Full Text PDF