Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As soil pollution by mercury (Hg) is a serious socio-environmental problem, we assessed the ability of Stapf. (Syn. ) cv. Basilisk to germinate and grow under high Hg exposure. Germination tests were conducted in germination boxes for 21 days, while the long-term effects of Hg on the growth of were evaluated after cultivating plants for 150 days in pots containing Hg-polluted soil. Seed germination decreased with increasing Hg exposure. However, more than 50% of the seeds still germinated under very high Hg exposure (86.4 mg L). We postulate that malate dehydrogenase and esterase (important in generating energy and mobilizing seed reserves), as well as superoxide dismutase and peroxidase (mitigating cellular Hg-induced oxidative stress) considerably contribute to this. Plant growth was severely restricted at a Hg concentration of 86.4 mg kg, ultimately leading to plant death. At lower Hg concentrations, stored most of the Hg in its roots, with limited translocation to the shoots. Nevertheless, photosynthesis was impaired, although nutrient content was generally not significantly affected by Hg exposure. Overall, our findings suggest that can be used for the revegetation of Hg-polluted soils with Hg concentrations of up to 43.2 mg kg.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2025.2531560DOI Listing

Publication Analysis

Top Keywords

plant growth
8
high exposure
8
phytostabilization mercury-polluted
4
mercury-polluted soils
4
soils from seed
4
germination
4
from seed germination
4
germination plant
4
growth soil
4
soil pollution
4

Similar Publications

Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.

View Article and Find Full Text PDF

Optimization of Nitrogen Application and Root Biomass Modulates 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice.

Physiol Plant

September 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.

The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.

View Article and Find Full Text PDF

UV2 and LW opsin genes mediate phototactic responses in the Asian lady beetle, Harmonia axyridis.

Insect Sci

September 2025

Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Phototaxis is a critical behavior in insects and is closely linked to vision and environmental adaptation. Understanding how insects perceive light and exhibit phototactic responses is crucial for assessing the ecological impact of artificial light at night. However, the molecular and neural mechanisms that regulate phototactic responses in insects remain largely unknown.

View Article and Find Full Text PDF

Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.

View Article and Find Full Text PDF

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF