98%
921
2 minutes
20
Understanding how genomic information is selectively utilized across different life stages is essential for deciphering the developmental and evolutionary strategies of metazoans. In holometabolous insects, the dynamic expression of genes enables distinct functional adaptations at embryonic, larval, pupal, and adult stages, likely contributing to their evolutionary success. While Drosophila melanogaster (D. melanogaster) has been extensively studied, less is known about the evolutionary dynamics that could govern stage-specific gene expression. To address this question, we compared the distribution of stage-specific genes, that is, genes expressed in temporally restricted developmental stages, across the development of D. melanogaster and Aedes aegypti (A. aegypti). Using tau-scoring, a computational method to determine gene expression specificity, we found that, on average, a large proportion of genes (20%-30% of all protein-coding genes) in both species exhibit restricted expression to specific developmental stages. Phylostratigraphy analysis, a method to date the age of genes, further revealed that stage-specific genes fall into two major categories: highly conserved and recently evolved. Notably, many of the recently evolved and stage-specific genes identified in A. aegypti and D. melanogaster are restricted to Diptera order (20%-35% of all stage-specific genes), highlighting ongoing evolutionary processes that continue to shape life-stage transitions. Overall, our findings underscore the complex interplay between gene evolutionary age, expression specificity, and morphological transformations in development. These results suggest that the attraction of genes to critical life-stage transitions is an ongoing process that may not be constant across evolutionary time or uniform between different lineages, offering new insights into the adaptability and diversification of dipteran genomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.b.23317 | DOI Listing |
New Phytol
September 2025
College of Biology, Hunan University, Changsha, 410082, China.
In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.
View Article and Find Full Text PDFGenes Immun
September 2025
Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified.
View Article and Find Full Text PDFPlant J
September 2025
Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.
View Article and Find Full Text PDFCurr Cancer Drug Targets
August 2025
Department of Gynecology, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
Introduction: Ovarian clear cell carcinoma (OCCC) accounts for about 5% of all epithelial ovarian cancers. Currently, its treatment mainly refers to high-grade serous carci-noma (HGSC). This study aimed to explore differences in clinical characteristics between OCCC and HGSC and studied the reasons for the differences.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand.
Introduction: Rice is mainly consumed by half of the world's population. The imminent climate change and population growth expected in the next 30 years will outpace the current rice production capacity, posing risks to food and nutrition security in developing nations. One simplified approach to address this challenge is to improve photosynthetic capacity by increasing chlorophyll content in leaves and stems.
View Article and Find Full Text PDF