Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TAR DNA-binding protein 43 (TDP-43) is of particular interest in the pathogenesis of amyotrophic lateral sclerosis (ALS). It has been speculated that loss of nuclear TDP-43 and its cytoplasmic aggregation contributes to neurodegeneration. Although considerable attention has been paid to RNA metabolism in TDP-43 function, TDP-43 is also known to act as a transcription factor. This study found that the expression of Nuclear-enriched abundant transcript 1 (), a long-non-coding RNA, was substantially downregulated in motor neurons with nuclear TDP-43 loss, but upregulated in those with preserved nuclear TDP-43, in the postmortem spinal cords of patients with sporadic ALS. TDP-43 depletion induced downregulation in Neuro2a cells, primary cortical neurons, and mouse spinal motor neurons. Furthermore, TDP-43 was found to positively regulate at the transcriptional level. Finally, knockout exacerbates neurodegeneration of hSOD1 mice accompanied by increased misfolded superoxide dismutase 1 (SOD1) aggregations. Transcriptome analysis revealed that knockout reduced protein folding-related genes, such as heat shock protein family A member 1A (), in the spinal cords of hSOD1 mice. Our results indicated that the loss of TDP-43 function enhances ALS neurodegeneration by losing the protective effect of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256815PMC
http://dx.doi.org/10.1093/braincomms/fcaf261DOI Listing

Publication Analysis

Top Keywords

tdp-43 function
12
nuclear tdp-43
12
tdp-43
10
loss tdp-43
8
amyotrophic lateral
8
lateral sclerosis
8
motor neurons
8
spinal cords
8
hsod1 mice
8
downregulation loss
4

Similar Publications

Ambient Air Pollution and the Severity of Alzheimer Disease Neuropathology.

JAMA Neurol

September 2025

Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.

Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF

A single-cell, long-read, isoform-resolved case-control study of FTD reveals cell-type-specific and broad splicing dysregulation in human brain.

Cell Rep

September 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA. Electronic address:

Progranulin-deficient frontotemporal dementia (GRN-FTD) is a major cause of familial FTD with TAR DNA-binding protein 43 (TDP-43) pathology, which is linked to exon dysregulation. However, little is known about this dysregulation in glial and neuronal cells. Here, using splice-junction-covering enrichment probes, we introduce single-nuclei long-read RNA sequencing 2 (SnISOr-Seq2), targeting 3,630 high-interest genes without loss of precision, and complete the first single-cell, long-read-resolved case-control study for neurodegeneration.

View Article and Find Full Text PDF

Network dysfunction precedes neurodegeneration in a dox-regulatable TDP-43 mouse model of ALS-FTD.

J Neurosci

September 2025

Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.

Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).

View Article and Find Full Text PDF

TDP-43 is a nuclear protein encoded by the TARDBP gene, which forms pathological aggregates in various neurodegenerative diseases, collectively known as TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These diseases are characterized by multiple pathological mechanisms, with disruptions in lipid regulatory pathways emerging as a critical factor. However, the role of TDP-43 in the regulation of the brain lipid homeostasis and the potential connection of TDP-43 dysfunction to myelin alterations in TDP-43 proteionopathies remain poorly understood, despite the fact that lipids, particularly cholesterol, comprise nearly 70% of myelin.

View Article and Find Full Text PDF