98%
921
2 minutes
20
Next-generation sequencing (NGS) technologies have achieved remarkable success in both biological research and clinical applications. However, in recent years, performance improvements have slowed due to fundamental limitations imposed by Poiseuille fluid dynamics in flow cells, which we overcome using Couette flow. Here we show NGS by roll-to-roll fluidics (r2r-fl), a cost-effective approach compatible with flexible biochip sizes. r2r-fl is a practical implementation of plane Couette flow, with up to 85-fold lower reagent consumption (US$0.16 per gigabase pair), rinsing times under 2 s and a reduction in paired-end 100-base pair sequencing turnaround from days to less than 12 h. The method maintains over 99.9% precision and 99.3% sensitivity of single nucleotide polymorphisms in the human genome, 99.9% mapping rate for Escherichia coli, and minimal nucleotide substitutions, deletions or insertions in the severe acute respiratory syndrome coronavirus 2 alpha strain. By lowering cost and time, r2r-fl enables rapid, scalable NGS for pathogen detection, cancer diagnostics and genetic disease profiling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41592-025-02730-2 | DOI Listing |
Nat Methods
August 2025
New Cornerstone Science Laboratory, College of Chemistry, Fuzhou University, Fuzhou, China.
Next-generation sequencing (NGS) technologies have achieved remarkable success in both biological research and clinical applications. However, in recent years, performance improvements have slowed due to fundamental limitations imposed by Poiseuille fluid dynamics in flow cells, which we overcome using Couette flow. Here we show NGS by roll-to-roll fluidics (r2r-fl), a cost-effective approach compatible with flexible biochip sizes.
View Article and Find Full Text PDFMicromachines (Basel)
June 2025
Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
Microfluidic devices have emerged as a pivotal in vitro technology for axon outgrowth studies, facilitating the separation of the cell body from the neurites by geometric constraints. However, traditional microfabrication techniques fall short in terms of scalability for large-scale production, hindering widespread application. This study presents the development of foil-based cell culture chips, made of polyethylene terephthalate and in-house formulated ultraviolet curable liquid resin by high-throughput roll-to-roll (R2R) manufacturing.
View Article and Find Full Text PDFLab Chip
September 2024
ECLS Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
The ability to cost-effectively produce large surface area microfluidic devices would bring many small-scale technologies such as microfluidic artificial lungs (μALs) from the realm of research to clinical and commercial applications. However, efforts to scale up these devices, such as by stacking multiple flat μALs have been labor intensive and resulted in bulky devices. Here, we report an automated manufacturing system, and a series of cylindrical multi-layer lungs manufactured with the system and tested for fluidic fidelity and function.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 813 Ferst Dr., Atlanta, Georgia 30349, United States.
Polymer thin films with a cross-web gradient structure is a burgeoning area of research, having received more attention in the last two decades, for improvements in the performance and material properties. Such patterned films have been fabricated using several techniques, but in practice these techniques are non-scalable, material-dependent, wasteful, and not highly efficient. Slot die coating, a well-known scalable manufacturing process, is used to fabricate gradient polymer thin films which will be investigated herein.
View Article and Find Full Text PDFMRS Adv
May 2021
Materials-Institute for Surface Technologies and Photonics, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8160 Weiz, Austria.
Abstract: With the Covid-19-based global pandemic that started in the beginning of 2020, the vital importance of accelerated, reliable and affordable virus testing systems has once again become clearer. Besides, we all learned very well that the disposable biochips, to be used in these in vitro diagnostic (IVD) testing systems, supposed to be produced in large amounts in a very short time to be widely available for the use of humanity to save more and more lives. That is why; roll-to-roll (R2R) polymer structuring manners offer such large quantities for the production of in vitro biochips.
View Article and Find Full Text PDF