98%
921
2 minutes
20
Mutations in the ATRX genes cause alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome. Here, we show that ATRX influences the fate of human neural progenitor cells (hNPCs) by forming condensates through liquid-liquid phase separation (LLPS). The intrinsically disordered region (IDR) of ATRX is essential for LLPS and enables ATRX to form dynamic condensates that recruit co-activators. These condensates are necessary for ATRX localization at super-enhancers (SEs) in hNPCs, linking its compartmentalization to transcriptional regulation. Disruption of ATRX condensates alters gene expression and impairs neuronal differentiation. Our findings support a model in which ATRX phase separation regulates gene networks required for hNPC identity. These findings extend current understanding of ATRX function beyond its roles in chromatin structure and suggest that LLPS is a key regulatory mechanism by which ATRX supports neurodevelopment. This study opens avenues for further investigation into how dysregulation of ATRX and its phase-separation ability may contribute to the pathogenesis of ATR-X syndrome and related neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259971 | PMC |
http://dx.doi.org/10.1038/s41467-025-61881-0 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
September 2025
Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Am J Surg Pathol
September 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Embryonic-type neuroectodermal tumor (ENT; previously referred to as primitive neuroectodermal tumor, PNET) of the testis and gynecologic tract share morphologic features with small round blue cell tumors, including Ewing sarcoma (ES), yet are biologically, therapeutically, and prognostically distinct. The diagnosis of ENT can be challenging, and it is unclear if there are reliable biomarkers that can be used to confirm this diagnosis. This study characterized 50 ENTs arising from the testis (n=38) and gynecologic tract (n=12; 7 ovary/5 uterus) with 27 biomarkers (AE1/AE3, ATRX, CD99, chromogranin-A, Cyclin D1, Fli-1, GFAP, GLUT-1, IDH1/2, INSM1, MTAP, NANOG, Nestin, neurofilament, NKX2.
View Article and Find Full Text PDFCureus
July 2025
Pediatric Department, Royal Medical Services, Queen Rania Children's Hospital, Amman, JOR.
Alpha-thalassemia X-linked intellectual disability syndrome (ATR-X syndrome) is a rare genetic disorder caused by mutations in the gene, typically affecting males and presenting with neurodevelopmental and systemic manifestations. We report, to the best of our knowledge, the first genetically confirmed case of ATR-X syndrome in Jordan, involving a two-and-a-half-year-old male patient who presented with global developmental delay, dysmorphic facies, hypotonia, and bilateral cystic kidneys. Despite persistent microcytic anemia, hemoglobin electrophoresis and PCR for alpha-globin gene deletions were negative.
View Article and Find Full Text PDFMedicina (Kaunas)
August 2025
Neuroradiology Unit, NESMOS (Neuroscience, Mental Health and Sensory Organs) Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189 Rome, Italy.
The 2021 WHO classification of brain tumours revolutionised the oncological field by emphasising the role of molecular, genetic and pathogenetic advances in classifying brain tumours. In this context, incidental gliomas have been increasingly identified due to the widespread performance of standard and advanced MRI sequences and represent a diagnostic and therapeutic challenge. The impactful decision to perform a surgical procedure deeply relies on the non-invasive identification of features or parameters that may correlate with brain tumour genetic profile and grading.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino, Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy.
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1-2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not fully capture the complex mechanisms involved, such as oxidative stress, mitochondrial dysfunction, and tumor-associated macrophage infiltration.
View Article and Find Full Text PDF